Difference between revisions of "009A Sample Final 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(5 intermediate revisions by the same user not shown)
Line 6: Line 6:
  
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
 
<span class="exam">(c) &nbsp;<math style="vertical-align: -15px">\lim_{x\rightarrow -\infty} \frac{\sqrt{x^2+2}}{2x-1}</math>
 +
<hr>
 +
[[009A Sample Final 2, Problem 1 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|'''L'Hôpital's Rule'''
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; Suppose that &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} f(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -11px">\lim_{x\rightarrow \infty} g(x)</math>&nbsp; are both zero or both &nbsp;<math style="vertical-align: -1px">\pm \infty .</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; If &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}</math>&nbsp; is finite or &nbsp;<math style="vertical-align: -4px">\pm \infty ,</math>
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; then &nbsp;<math style="vertical-align: -19px">\lim_{x\rightarrow \infty} \frac{f(x)}{g(x)}\,=\,\lim_{x\rightarrow \infty} \frac{f'(x)}{g'(x)}.</math>
 
|}
 
  
 +
[[009A Sample Final 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''Solution:'''
 
  
'''(a)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We begin by noticing that we plug in &nbsp;<math style="vertical-align: 0px">x=4</math>&nbsp; into
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\frac{\sqrt{x+5}-3}{x-4},</math>
 
|-
 
|we get &nbsp; <math style="vertical-align: -12px">\frac{0}{0}.</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}} & = & \displaystyle{\lim_{x\rightarrow 4} \frac{\sqrt{x+5}-3}{x-4}\frac{(\sqrt{x+5}+3)}{(\sqrt{x+5}+3)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{(x+5)-9}{(x-4)(\sqrt{x+5}+3)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{x-4}{(x-4)(\sqrt{x+5}+3)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{x\rightarrow 4} \frac{1}{\sqrt{x+5}+3}}\\
 
&&\\
 
& = & \displaystyle{ \frac{1}{\sqrt{9}+3}}\\
 
&&\\
 
& = & \displaystyle{\frac{1}{6}.}
 
\end{array}</math>
 
|-
 
|
 
|}
 
 
'''(b)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|}
 
 
'''(c)'''
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp;'''(a)'''&nbsp; &nbsp;<math>\frac{1}{6}</math>
 
|-
 
|&nbsp; &nbsp;'''(b)'''&nbsp; &nbsp;<math>0</math>
 
|-
 
|&nbsp; &nbsp;'''(c)'''&nbsp; &nbsp;<math>\frac{-1}{2}</math>
 
|}
 
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Final_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 10:05, 1 December 2017

Compute

(a)  

(b)  

(c)  


Solution


Detailed Solution


Return to Sample Exam