Difference between revisions of "009C Sample Midterm 3"

From Grad Wiki
Jump to navigation Jump to search
 
(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
'''This is a department sample midterm, and is meant to represent the material usually covered in Math 9C. Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''  
+
'''This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar.'''  
  
Instructions: This exam has a total of 60 points. You have 50 minutes. You must show all your work to receive full credit You may use any
+
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
result done in class. The points attached to each problem are indicated beside the problem.You are not allowed books, notes, or calculators.
+
<div class="noautonum">__TOC__</div>
Answers should be written as <math>\sqrt{2}</math> as opposed to 1.4142135.
 
  
 +
== [[009C_Sample Midterm 3,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 +
<span class="exam">Test if the following sequence <math  style="vertical-align: -10%">{a_n}</math> converges or diverges.
  
== Convergence and Limits of a Sequence ==
+
<span class="exam">If it converges, also find the limit of the sequence.
  
<span class="exam">[[009C_Sample_Final_3,_Problem_1|<span class="biglink">&nbsp;Problem 1.&nbsp;</span>]] &nbsp; (12 points) Test if the following sequence <math  style="vertical-align: -10%">{a_n}</math> converges or diverges. If it converges, also find the limit of the sequence.
+
::<math>a_{n}=\left(\frac{n-7}{n}\right)^{\frac{1}{n}}</math>
  
::<math>a_{n}=\left(\frac{n-7}{n}\right)^{1/n}.</math>
+
== [[009C_Sample Midterm 3,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 +
<span class="exam">For each the following series find the sum, if it converges.
  
== Sum of a Series ==
+
<span class="exam">If you think it diverges, explain why.
  
2. For each the following series find the sum, if it converges. If
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -50%">\frac{1}{2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3^{2}}-\frac{1}{2\cdot3^{3}}+\frac{1}{2\cdot3^{4}}-\frac{1}{2\cdot3^{5}}+\cdots </math>
you think it diverges, explain why.
+
<br>
  
(a) (6 points) $\frac{1}{2}-\frac{1}{2\cdot3}+\frac{1}{2\cdot3^{2}}-\frac{1}{2\cdot3^{3}}+\frac{1}{2\cdot3^{4}}-\frac{1}{2\cdot3^{5}}+\cdots$
+
<span class="exam">(b) &nbsp;<math style="vertical-align: -75%"> \sum_{n=1}^{\infty}\,\frac{3}{(2n-1)(2n+1)}</math>
  
(b) (6 points) ${\displaystyle \sum_{n=1}^{\infty}}\frac{3}{(2n-1)(2n+1)}.$
+
== [[009C_Sample Midterm 3,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam">Test if each the following series converges or diverges.  
  
== Convergence Tests for Series I ==
+
<span class="exam">Give reasons and clearly state if you are using any standard test.
  
3. Test if each the following series converges or diverges. Give reasons
+
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=1}^{\infty}}\,\frac{n!}{(3n+1)!}</math>
and clearly state if you are using any standard test.
+
<br>
  
(a) (6 points) ${\displaystyle \sum_{n=1}^{\infty}}\frac{n!}{(3n+1)!}.$
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=2}^{\infty}}\,\frac{\sqrt{n}}{n^{2}-3}</math>
  
(b) (6 points) ${\displaystyle \sum_{n=2}^{\infty}}\frac{\sqrt{n}}{n^{2}-3}.$
+
== [[009C_Sample Midterm 3,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 +
<span class="exam">Test the series for convergence or divergence.  
  
 +
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\sin\frac{\pi}{n}</math>
  
== Convergence Tests for Series II ==
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=1}^{\infty}}\,(-1)^{n}\cos\frac{\pi}{n}</math>
4. Test the series for convergence or divergence.
 
  
(a) (6 points) ${\displaystyle \sum_{n=1}^{\infty}}(-1)^{n}\sin\frac{\pi}{n}.$
+
== [[009C_Sample Midterm 3,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
 
+
<span class="exam"> Find the radius of convergence and the interval of convergence
(b) (6 points)${\displaystyle \sum_{n=1}^{\infty}}(-1)^{n}\cos\frac{\pi}{n}.$
 
 
 
== Radius and Interval of Convergence ==
 
 
 
5. Find the radius of convergence and the interval of convergence
 
 
of the series.  
 
of the series.  
  
(a) (6 points) ${\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}.$
+
<span class="exam">(a) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(-1)^{n}x^{n}}{n+1}</math>
  
(b) (6 points) ${\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}.$
+
<span class="exam">(b) &nbsp;<math>{\displaystyle \sum_{n=0}^{\infty}}\frac{(x+1)^{n}}{n^{2}}</math>

Latest revision as of 18:55, 23 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9C for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Test if the following sequence converges or diverges.

If it converges, also find the limit of the sequence.

 Problem 2 

For each the following series find the sum, if it converges.

If you think it diverges, explain why.

(a)  

(b)  

 Problem 3 

Test if each the following series converges or diverges.

Give reasons and clearly state if you are using any standard test.

(a)  

(b)  

 Problem 4 

Test the series for convergence or divergence.

(a)  

(b)  

 Problem 5 

Find the radius of convergence and the interval of convergence of the series.

(a)  

(b)