Difference between revisions of "009B Sample Midterm 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
<span class="exam">Evaluate the indefinite and definite integrals.
 
<span class="exam">Evaluate the indefinite and definite integrals.
  
<span class="exam">(a) &nbsp; <math>\int \tan^3x ~dx</math>  
+
<span class="exam">(a) &nbsp; <math>\int x\ln x ~dx</math>  
  
 
<span class="exam">(b) &nbsp; <math>\int_0^\pi \sin^2x~dx</math>
 
<span class="exam">(b) &nbsp; <math>\int_0^\pi \sin^2x~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 5 Solution|'''<u>Solution</u>''']]
  
 +
 +
[[009B Sample Midterm 3, Problem 5 Detailed Solution|'''<u>Detailed Solution</u>''']]
 +
 +
 +
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"

Revision as of 17:31, 23 November 2017

Evaluate the indefinite and definite integrals.

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam

Foundations:  
1. Recall the trig identity
       
2. Recall the trig identity
       
3. How would you integrate  

        You could use  -substitution.

        First, write  

        Now, let    Then,  

        Thus,

       


Solution:

(a)

Step 1:  
We start by writing

       

Since    we have

       

Step 2:  
Now, we need to use  -substitution for the first integral.

Let  

Then,  
So, we have

       

Step 3:  
For the remaining integral, we also need to use  -substitution.
First, we write

       

Now, we let  
Then,  
Therefore, we get

       

(b)

Step 1:  
One of the double angle formulas is
       
Solving for    we get
       
Plugging this identity into our integral, we get

       

Step 2:  
If we integrate the first integral, we get

       

Step 3:  
For the remaining integral, we need to use  -substitution.
Let  
Then,    and  
Also, since this is a definite integral and we are using -substitution,
we need to change the bounds of integration.
We have    and  
So, the integral becomes

       


Final Answer:  
    (a)    
    (b)    

Return to Sample Exam