Difference between revisions of "009B Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(9 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam"> The rate of reaction to a drug is given by:
+
<span class="exam"> Compute the following integrals:
  
::::::<math>r'(t)=2t^2e^{-t}</math>
+
<span class="exam">(a) &nbsp; <math>\int x^2\sin (x^3) ~dx</math>  
  
<span class="exam">where <math>t</math> is the number of hours since the drug was administered.
+
<span class="exam">(b) &nbsp; <math>\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2(x)\sin (x)~dx</math>
 +
<hr>
 +
[[009B Sample Midterm 3, Problem 4 Solution|'''<u>Solution</u>''']]
  
<span class="exam">Find the total reaction to the drug from <math>t=1</math> to <math>t=6.</math>
 
  
 +
[[009B Sample Midterm 3, Problem 4 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|If we calculate <math style="vertical-align: -14px">\int_a^b r'(t)~dt,</math> what are we calculating?
 
|-
 
|
 
::We are calculating <math style="vertical-align: -5px">r(b)-r(a).</math> This is the total reaction to the 
 
|-
 
|
 
::drug from <math style="vertical-align: 0px">t=a</math> to <math style="vertical-align: 0px">t=b.</math>
 
|}
 
  
 
'''Solution:'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 3: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp;&nbsp;
 
|}
 
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:30, 12 November 2017

Compute the following integrals:

(a)  

(b)  


Solution


Detailed Solution


Return to Sample Exam