Difference between revisions of "009B Sample Midterm 1, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(20 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<span class="exam">Evaluate the indefinite and definite integrals.
+
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
  
::<span class="exam">a) <math>\int x^2\sqrt{1+x^3}dx</math>
+
<span class="exam">(a) Compute the left-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
::<span class="exam">b) <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx</math>
 
  
 +
<span class="exam">(b) Compute the right-hand Riemann sum approximation of &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; with &nbsp;<math style="vertical-align: 0px">n=3</math>&nbsp; boxes.
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
!Foundations: &nbsp;  
 
|-
 
| Review u substitution
 
|}
 
  
'''Solution:'''
+
<hr>
 +
[[009B Sample Midterm 1, Problem 1 Solution|'''<u>Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We need to use substitution. Let <math>u=1+x^3</math>. Then, <math>du=3x^2dx</math> and <math>\frac{du}{3}=x^2dx</math>.
 
|-
 
|Therefore, the integral becomes <math>\frac{1}{3}\int \sqrt{u}du</math>.
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009B Sample Midterm 1, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|We now have:
 
|-
 
|<math>\int x^2\sqrt{1+x^3}dx=\frac{1}{3}\int \sqrt{u}du=\frac{2}{9}u^{\frac{3}{2}}+C=\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>.
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Again, we need to use substitution. Let <math>u=\sin(x)</math>. Then, <math>du=\cos(x)dx</math>. Also, we need to change the bounds of integration.
 
|-
 
|Plugging in our values into the equation <math>u=\sin(x)</math>, we get <math>u_1=\sin\bigg(\frac{\pi}{4}\bigg)=\frac{\sqrt{2}}{2}</math> and <math>u_2=\sin\bigg(\frac{\pi}{2}\bigg)=1</math>.
 
|-
 
|Therefore, the integral becomes <math>\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du</math>.
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|We now have:
 
|-
 
|<math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}dx=\int_{\frac{\sqrt{2}}{2}}^1 \frac{1}{u^2}du=\left.\frac{-1}{u}\right|_{\frac{\sqrt{2}}{2}}^1=-\frac{1}{1}-\frac{-1}{\frac{\sqrt{2}}{2}}=-1+\sqrt{2}</math>.
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)''' <math>\frac{2}{9}(1+x^3)^{\frac{3}{2}}+C</math>
 
|-
 
|'''(b)''' <math>-1+\sqrt{2}</math>
 
|}
 
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009B_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:42, 12 November 2017

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.


Solution


Detailed Solution


Return to Sample Exam