Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(6 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">The position function <math>s(t)=-4.9t^2+200</math> gives the height (in meters) of an object that has fallen from a height of 200 meters. The velocity at time <math>t=a</math> seconds is given by:
+
<span class="exam">Sketch the graph of &nbsp;<math style="vertical-align: -4px">f.</math>&nbsp; At each point of discontinuity, state whether &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is left or right continuous.
::::::<math>\lim_{t\rightarrow a} \frac{s(t)-s(a)}{t-a}</math>
 
  
 
+
::<math>f(x)=\begin{array}{cc}
::<span class="exam">a) Find the velocity of the object when <math>t=3</math>
+
  \Bigg\{ &  
::<span class="exam">b) At what velocity will the object impact the ground?
+
    \begin{array}{cc}
 
+
      x^3+1 & x\leq 0 \\
 
+
      -x+1 & 0< x< 2 \\
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
      -x^2+10x-15 & x\ge 2
!Foundations: &nbsp;
+
    \end{array}
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
 
 
 
'''Solution:'''
 
 
 
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let <math>v(t)</math> be the velocity of the object at time <math>t.</math>
 
|-
 
|Then, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{s(t)-s(3)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+200-(-4.9(9)+200)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}.}
 
 
\end{array}</math>
 
\end{array}</math>
|}
+
<hr>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 3, Problem 2 Solution|'''<u>Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|Now, we factor the numerator to get
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(3)} & = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9t^2+44.1}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t^2-9)}{t-3}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} \frac{-4.9(t-3)(t+3)}{(t-3)}}\\
 
&&\\
 
& = & \displaystyle{\lim_{t\rightarrow 3} -4.9(t+3)}\\
 
&&\\
 
& = & \displaystyle{6(-4.9) \text{ meters/second}.}
 
\end{array}</math>
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|First, we need to find the time when the object hits the ground.
 
|-
 
|This corresponds to <math>s(t)=0.</math>
 
|-
 
|This give us the equation
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-4.9t^2+200=0.</math>
 
|-
 
|When we solve for <math>t,</math> we get
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>t^2=\frac{200}{4.9}.</math>
 
|-
 
|Hence, <math>t=\pm \sqrt{\frac{200}{4.9}}.</math>
 
|-
 
|Since <math>t</math> represents time, it does not make sense for <math>t</math> to be negative.
 
|-
 
|Therefore, the object hits the ground at <math>t=\sqrt{\frac{200}{4.9}}.</math>
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
[[009A Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
!Step 2: &nbsp;
 
|-
 
|Now, we need the equation for the velocity of the object. 
 
|-
 
|We have <math>v(t)=s'(t)</math> where <math>v(t)</math> is the velocity function of the object.
 
|-
 
|Hence,
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{v(t)} & = & \displaystyle{s'(t)}\\
 
&&\\
 
& = & \displaystyle{-9.8t.}
 
\end{array}</math>
 
|-
 
|Therefore, the velocity of the object when it hits the ground is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>-9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}.</math>
 
|}
 
  
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>6(-4.9) \text{ meters/second}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>-9.8\sqrt{\frac{200}{4.9}}\text{ meters/second}</math>
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:51, 11 November 2017

Sketch the graph of    At each point of discontinuity, state whether    is left or right continuous.


Solution


Detailed Solution


Return to Sample Exam