Difference between revisions of "009A Sample Midterm 3, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> ::<span class="exam">a) ::<span class="exam">b) {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |- | :: |...")
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">
+
<span class="exam">Sketch the graph of &nbsp;<math style="vertical-align: -4px">f.</math>&nbsp; At each point of discontinuity, state whether &nbsp;<math style="vertical-align: -4px">f</math>&nbsp; is left or right continuous.
  
::<span class="exam">a)
+
::<math>f(x)=\begin{array}{cc}
::<span class="exam">b)
+
  \Bigg\{ &
 +
    \begin{array}{cc}
 +
      x^3+1 & x\leq 0 \\
 +
      -x+1 & 0< x< 2 \\
 +
      -x^2+10x-15 & x\ge 2
 +
    \end{array}
 +
\end{array}</math>
 +
<hr>
  
 +
[[009A Sample Midterm 3, Problem 2 Solution|'''<u>Solution</u>''']]
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
::
 
|-
 
|
 
::
 
|}
 
  
'''Solution:'''
+
[[009A Sample Midterm 3, Problem 2 Detailed Solution|'''<u>Detailed Solution</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 16:51, 11 November 2017

Sketch the graph of    At each point of discontinuity, state whether    is left or right continuous.


Solution


Detailed Solution


Return to Sample Exam