Difference between revisions of "009A Sample Midterm 2, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> ::<span class="exam">a) ::<span class="exam">b) {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |- | :: |...")
 
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">
+
<span class="exam">Evaluate the following limits.
  
::<span class="exam">a)  
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -14px">\lim _{x\rightarrow 2} \frac{\sqrt{x^2+12}-4}{x-2}</math>
::<span class="exam">b)
 
  
 +
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -19px">\lim _{x\rightarrow 0} \frac{\sin(3x)}{\sin(7x)} </math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -20px">\lim _{x\rightarrow (\frac{\pi}{2})^-} \tan(x) </math>
!Foundations: &nbsp;
+
<hr>
|-
+
[[009A Sample Midterm 2, Problem 1 Solution|'''<u>Solution</u>''']]
|
 
|-
 
|
 
::
 
|-
 
|
 
::
 
|}
 
  
'''Solution:'''
 
  
'''(a)'''
+
[[009A Sample Midterm 2, Problem 1 Detailed Solution|'''<u>Detailed Solution</u>''']]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_2|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 15:34, 9 November 2017

Evaluate the following limits.

(a) Find  

(b) Find  

(c) Evaluate  


Solution


Detailed Solution


Return to Sample Exam