Difference between revisions of "009A Sample Midterm 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam"> ::<span class="exam">a) ::<span class="exam">b) {| class="mw-collapsible mw-collapsed" style = "text-align:left;" !Foundations:   |- | |- | :: |...")
 
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">
+
<span class="exam"> Find the derivatives of the following functions. Do not simplify.
  
::<span class="exam">a)  
+
<span class="exam">(a)&nbsp; <math style="vertical-align: -16px">f(x)=\frac{(3x-5)(-x^{-2}+4x)}{x^{\frac{4}{5}}}</math>
::<span class="exam">b)
 
  
 +
<span class="exam">(b)&nbsp; <math>g(x)=\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{\pi}</math>&nbsp; for &nbsp;<math style="vertical-align: 0px">x>0.</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<hr>
!Foundations: &nbsp;
 
|-
 
|
 
|-
 
|
 
::
 
|-
 
|
 
::
 
|}
 
  
'''Solution:'''
+
[[009A Sample Midterm 3, Problem 4 Detailed Solution|'''<u>Detailed Solution with Background Information</u>''']]
  
'''(a)'''
+
[[File:9ASM3P4.jpg|600px|thumb|center]]
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|-
 
|
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|'''(a)'''
 
|-
 
|'''(b)'''
 
|}
 
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_3|'''<u>Return to Sample Exam</u>''']]

Latest revision as of 18:57, 6 November 2017

Find the derivatives of the following functions. Do not simplify.

(a) 

(b)    for  


Detailed Solution with Background Information

Return to Sample Exam