Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 17: Line 17:
 
<hr>
 
<hr>
  
[[File:9ASM1P3.jpg|600px]]
+
[[File:9ASM1P3.jpg|600px|thumb|center]]
 +
 
  
 
[[009A Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']]
 
[[009A Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']]
  
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 08:28, 5 November 2017

Consider the following function  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f:}

Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f(x) = \left\{ \begin{array}{lr} x^2 & \text{if }x < 1\\ \sqrt{x} & \text{if }x \geq 1 \end{array} \right. }

(a) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1^-} f(x).}

(b) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1^+} f(x).}

(c) Find  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lim_{x\rightarrow 1} f(x).}

(d) Is  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f}   continuous at  Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=1?}   Briefly explain.


9ASM1P3.jpg


Detailed Solution for this Problem

Return to Sample Exam