Difference between revisions of "009B Sample Midterm 2"

From Grad Wiki
Jump to navigation Jump to search
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar. Click on the'''  
+
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.'''  
  
'''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
+
'''Click on the <span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
 
== [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
== [[009B_Sample Midterm 2,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
<span class="exam">
+
<span class="exam"> This problem has three parts:
 +
 
 +
<span class="exam">(a) State the both parts of the fundamental theorem of calculus.
 +
 
 +
<span class="exam">(b) Compute &nbsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>.
 +
 
 +
<span class="exam">(c) Evaluate &nbsp;<math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
  
 
== [[009B_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 2,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
<span class="exam"> This problem has three parts:
+
<span class="exam"> Evaluate
  
::<span class="exam">a) State the Fundamental Theorem of Calculus.
+
<span class="exam">(a) &nbsp; <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>
  
::<span class="exam">b) Compute &thinsp; <math style="vertical-align: -15px">\frac{d}{dx}\int_0^{\cos (x)}\sin (t)~dt</math>.
+
<span class="exam">(b) &nbsp; <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
  
::<span class="exam">c) Evaluate <math style="vertical-align: -14px">\int_{0}^{\pi/4}\sec^2 x~dx</math>.
+
== [[009B_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 +
<span class="exam"> A particle moves along a straight line with velocity given by:
  
== [[009B_Sample Midterm 2,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
::<math>v(t)=-32t+200</math>
<span class="exam"> Evaluate
 
  
::<span class="exam">a) <math style="vertical-align: -14px">\int_1^2\bigg(2t+\frac{3}{t^2}\bigg)\bigg(4t^2-\frac{5}{t}\bigg)~dt</math>
+
<span class="exam">feet per second. Determine the total distance traveled by the particle
  
::<span class="exam">b) <math style="vertical-align: -14px">\int_0^2 (x^3+x)\sqrt{x^4+2x^2+4}~dx</math>
+
<span class="exam">from time &nbsp;<math style="vertical-align: 0px">t=0</math>&nbsp; to time &nbsp;<math style="vertical-align: -1px">t=10.</math>
  
 
== [[009B_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
== [[009B_Sample Midterm 2,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==

Latest revision as of 18:28, 4 November 2017

This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

This problem has three parts:

(a) State the both parts of the fundamental theorem of calculus.

(b) Compute   .

(c) Evaluate  .

 Problem 2 

Evaluate

(a)  

(b)  

 Problem 3 

A particle moves along a straight line with velocity given by:

feet per second. Determine the total distance traveled by the particle

from time    to time  

 Problem 4 

Evaluate the integral:

 Problem 5 

Evaluate the integral: