Difference between revisions of "009A Sample Final A"
m (→Limits) |
|||
(28 intermediate revisions by the same user not shown) | |||
Line 5: | Line 5: | ||
<span style="font-size:135%"><font face=Times Roman> | <span style="font-size:135%"><font face=Times Roman> | ||
− | 1. Find the following limits:<br> (a) <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> | + | 1. Find the following limits:<br> (a) <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math> |
<br><br> | <br><br> | ||
− | (b) | + | (b) <math style="vertical-align: -55%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math> |
<br><br> | <br><br> | ||
− | (c) <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math> | + | (c) <math style="vertical-align: -65%;">\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math> |
<br><br> | <br><br> | ||
− | (d) <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math> | + | (d) <math style="vertical-align: -65%;">\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math> |
<br><br> | <br><br> | ||
− | (e) <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math> | + | (e) <math style="vertical-align: -50%;">\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math> |
</font face=Times Roman> </span> | </font face=Times Roman> </span> | ||
+ | |||
+ | |||
+ | [[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; color: #2D6CC0; border-color:##2D6CC0; background-color: #FFD97D"><font face=Times Roman>''' Problem 1. '''</font face=Times Roman></span>]] | ||
+ | |||
+ | [[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; border-color:#2D6CC0; background-color: #FFD97D; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 2. '''</font face=Times Roman></span>]] | ||
+ | |||
+ | [[Beamer_Templates|<span style="font-size:135%; background-color: #FFD97D; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 2a. '''</font face=Times Roman></span>]] | ||
+ | |||
+ | [[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; border-color:#2D6CC0; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 3. '''</font face=Times Roman></span>]] | ||
+ | |||
+ | [[Beamer_Templates|<span style="font-size:135%; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 3a. '''</font face=Times Roman></span>]] | ||
+ | |||
+ | <span style="font-size:135%; color: #2D6CC0; background-color: #FFD97D"><font face=Times Roman>''' Problem 4. '''</font face=Times Roman></span> | ||
+ | |||
+ | <span style="font-size:135%; color: #2D6CC0; background-color: #FFD97D; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 5. '''</font face=Times Roman></span> | ||
+ | |||
+ | <span style="font-size:135%; color: #2D6CC0; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' Problem 6. '''</font face=Times Roman></span> | ||
+ | |||
+ | This is a link test. <span style="border-style:solid; border-width:thin; color: #2D6CC0; border-color:#2D6CC0; background-color: #FFD97D">Problem 7.</span> Does it look big? | ||
+ | |||
+ | This is a link test. <span style="; color: #2D6CC0; background-color: #FFD97D">Problem 8.</span> Does it look big? | ||
+ | |||
+ | This is a link test. <span style="; color: #2D6CC0; background-color: #FFEFC9; box-shadow: 1px 1px 2px #888">Problem 9.</span> Does it look big? | ||
+ | |||
+ | This is a link test. <span style="; color: #2D6CC0; background-color: #FFD97D; box-shadow: 1px 1px 2px #888">Problem 10.</span> Does it look big? | ||
+ | |||
+ | This is a link test. <span style="border-style:solid; border-width:thin; color: #2D6CC0; border-color:##2D6CC0; background-color: #FFD97D; box-shadow: 1px 1px 2px #888">Problem 7.</span> Does it look big? | ||
== Derivatives == | == Derivatives == | ||
<span style="font-size:135%"><font face=Times Roman>2. Find the derivatives of the following functions: | <span style="font-size:135%"><font face=Times Roman>2. Find the derivatives of the following functions: | ||
<br> | <br> | ||
− | (a) | + | (a) <math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math> |
<br><br> | <br><br> | ||
− | (b) <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math> | + | (b) <math style="vertical-align: -15%;">g(x)=\pi+2\cos(\sqrt{x-2}).</math> |
<br><br> | <br><br> | ||
− | (c)</font face=Times Roman> </span> <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> | + | (c)</font face=Times Roman> </span> <math style="vertical-align: -25%;">h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math> |
<br> | <br> | ||
Line 29: | Line 56: | ||
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function: | <span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function: | ||
− | <math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> | + | <math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math> |
<br> | <br> | ||
(a) Find a value of <math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> | (a) Find a value of <math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> |
Latest revision as of 14:20, 11 April 2015
This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.
Limits
1. Find the following limits:
(a)
(b)
(c)
(d)
(e)
Problem 4.
Problem 5.
Problem 6.
This is a link test. Problem 7. Does it look big?
This is a link test. Problem 8. Does it look big?
This is a link test. Problem 9. Does it look big?
This is a link test. Problem 10. Does it look big?
This is a link test. Problem 7. Does it look big?
Derivatives
2. Find the derivatives of the following functions:
(a)
(b)
(c)
Continuity and Differentiability
3. (Version I) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
3. (Version II) Consider the following function:
(a) Find a value of which makes continuous at
(b) With your choice of , is differentiable at ? Use the definition of the derivative to motivate your answer.
Implicit Differentiation
4. Find an equation for the tangent line to the function at the point .
Derivatives and Graphing
5. Consider the function
(a) Find the intervals where the function is increasing and decreasing.
(b) Find the local maxima and minima.
(c) Find the intervals on which is concave upward and concave
downward.
(d) Find all inflection points.
(e) Use the information in the above to sketch the graph of .
Asymptotes
6. Find the vertical and horizontal asymptotes of the function
Optimization
7. A farmer wishes to make 4 identical rectangular pens, each with
500 sq. ft. of area. What dimensions for each pen will use the least
amount of total fencing?
<< insert image here >>
Linear Approximation
8. (a) Find the linear approximation to the function at the point .
(b) Use to estimate the value of .
Related Rates
9. A bug is crawling along the -axis at a constant speed of .
How fast is the distance between the bug and the point changing
when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).
Two Important Theorems
10. Consider the function
(a) Use the Intermediate Value Theorem to show that has at
least one zero.
(b) Use Rolle's Theorem to show that has exactly one zero.