Difference between revisions of "009A Sample Final A"

From Grad Wiki
Jump to navigation Jump to search
 
(55 intermediate revisions by the same user not shown)
Line 4: Line 4:
 
== Limits ==
 
== Limits ==
  
<span style="font-size:135%"><font face=Times Roman>1. Find the following limits:</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>
 
+
1. Find the following limits:<br>&nbsp;&nbsp;(a) &nbsp; <math style="vertical-align: -45%;">\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math>
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow0}\frac{\tan(3x)}{x^{3}}.</math>
 
 
<br><br>
 
<br><br>
<span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
+
&nbsp;&nbsp;(b)  <math style="vertical-align: -55%;">\lim_{x\rightarrow-\infty}\frac{\sqrt{x^{6}+6x^{2}+2}}{x^{3}+x-1}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
+
&nbsp;&nbsp;(c) &nbsp; <math style="vertical-align: -65%;">\lim_{x\rightarrow3}\frac{x-3}{\sqrt{x+1}-2}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:135%"><font face=Times Roman>(d)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
+
&nbsp;&nbsp;(d) &nbsp; <math style="vertical-align: -65%;">\lim_{x\rightarrow3}\frac{x-1}{\sqrt{x+1}-1}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:135%"><font face=Times Roman>(e)</font face=Times Roman> </span> &nbsp; <math>\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
+
&nbsp;&nbsp;(e)&nbsp; <math style="vertical-align: -50%;">\lim_{x\rightarrow\infty}\frac{5x^{2}-2x+3}{1-3x^{2}}.</math>
 +
</font face=Times Roman> </span>
 +
 
 +
 
 +
[[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; color: #2D6CC0; border-color:##2D6CC0; background-color: #FFD97D"><font face=Times Roman>''' &nbsp;Problem 1.&nbsp; '''</font face=Times Roman></span>]]
 +
 
 +
[[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; border-color:#2D6CC0; background-color: #FFD97D; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 2.&nbsp; '''</font face=Times Roman></span>]]
 +
 
 +
[[Beamer_Templates|<span style="font-size:135%; background-color: #FFD97D; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 2a.&nbsp; '''</font face=Times Roman></span>]]
 +
 
 +
[[Beamer_Templates|<span style="border-style:solid; border-width:thin; font-size:135%; border-color:#2D6CC0; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 3.&nbsp; '''</font face=Times Roman></span>]]
 +
 
 +
[[Beamer_Templates|<span style="font-size:135%; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 3a.&nbsp; '''</font face=Times Roman></span>]]
 +
 
 +
<span style="font-size:135%; color: #2D6CC0; background-color: #FFD97D"><font face=Times Roman>''' &nbsp;Problem 4.&nbsp; '''</font face=Times Roman></span>
 +
 
 +
<span style="font-size:135%; color: #2D6CC0; background-color: #FFD97D;  box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 5.&nbsp; '''</font face=Times Roman></span>
 +
 
 +
<span style="font-size:135%; color: #2D6CC0; background-color: #FFEFC9; box-shadow: 2px 2px 3px #888;"><font face=Times Roman>''' &nbsp;Problem 6.&nbsp; '''</font face=Times Roman></span>
 +
 
 +
This is a link test. <span style="border-style:solid; border-width:thin; color: #2D6CC0; border-color:#2D6CC0; background-color: #FFD97D">Problem 7.</span> Does it look big?
 +
 
 +
This is a link test. <span style="; color: #2D6CC0; background-color: #FFD97D">Problem 8.</span> Does it look big?
 +
 
 +
This is a link test. <span style="; color: #2D6CC0; background-color: #FFEFC9; box-shadow: 1px 1px 2px #888">Problem 9.</span> Does it look big?
 +
 
 +
This is a link test. <span style="; color: #2D6CC0; background-color: #FFD97D; box-shadow: 1px 1px 2px #888">Problem 10.</span> Does it look big?
 +
 
 +
This is a link test. <span style="border-style:solid; border-width:thin; color: #2D6CC0; border-color:##2D6CC0; background-color: #FFD97D; box-shadow: 1px 1px 2px #888">Problem 7.</span> Does it look big?
  
 
== Derivatives ==
 
== Derivatives ==
<span style="font-size:135%"><font face=Times Roman>2. Find the derivatives of the following functions:</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>2. Find the derivatives of the following functions:
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(a)</font face=Times Roman> </span>  &nbsp; <math>f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
+
&nbsp;&nbsp; (a) &nbsp;<math style="vertical-align: -45%;">f(x)=\frac{3x^{2}-5}{x^{3}-9}.</math>
 
<br><br>
 
<br><br>
<span style="font-size:135%"><font face=Times Roman>(b)</font face=Times Roman> </span> &nbsp; <math>g(x)=\pi+2\cos(\sqrt{x-2}).</math>
+
&nbsp;&nbsp; (b) &nbsp;<math style="vertical-align: -15%;">g(x)=\pi+2\cos(\sqrt{x-2}).</math>
 
<br><br>
 
<br><br>
 
+
&nbsp;&nbsp; (c)</font face=Times Roman> </span>&nbsp;<math style="vertical-align: -25%;">h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
<span style="font-size:135%"><font face=Times Roman>(c)</font face=Times Roman> </span> &nbsp; <math>h(x)=4x\sin(x)+e(x^{2}+2)^{2}.</math>
 
 
<br>
 
<br>
  
 
== Continuity and Differentiability ==
 
== Continuity and Differentiability ==
  
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function:</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>3. (Version I) Consider the following function:
&nbsp;<math>f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
+
&nbsp;<math style="vertical-align: -80%;">f(x) = \begin{cases} \sqrt{x}, & \mbox{if }x\geq 1, \\ 4x^{2}+C, & \mbox{if }x<1. \end{cases}</math>
 
+
<br>
<span style="font-size:135%"><font face=Times Roman>(a) Find a value of &nbsp;<math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math> </font face=Times Roman> </span>
+
&nbsp;&nbsp;(a) Find a value of &nbsp;<math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -3%;">x=1.</math>  
 
+
<br>
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
+
&nbsp;&nbsp;(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer.
 
+
<br><br>  
<span style="font-size:135%"><font face=Times Roman>3. (Version II) Consider the following function:</font face=Times Roman> </span>
+
3. (Version II) Consider the following function:
&nbsp;<math style="vertical-align: -110%;">g(x)=\begin{cases}
+
&nbsp;<math style="vertical-align: -80%;">g(x)=\begin{cases}
 
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\
 
\sqrt{x^{2}+3}, & \quad\mbox{if } x\geq1\\
 
\frac{1}{4}x^{2}+C, & \quad\mbox{if }x<1.
 
\frac{1}{4}x^{2}+C, & \quad\mbox{if }x<1.
 
\end{cases}</math>
 
\end{cases}</math>
 
+
<br>
<span style="font-size:135%"><font face=Times Roman>(a) Find a value of &nbsp;<math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -2.95%;">x=1.</math> </font face=Times Roman> </span>
+
&nbsp;&nbsp;(a) Find a value of &nbsp;<math style="vertical-align: -0.1%;">C</math> which makes <math>f</math> continuous at <math style="vertical-align: -2.95%;">x=1.</math>  
 
+
<br>
<span style="font-size:135%"><font face=Times Roman>(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
+
&nbsp;&nbsp;(b) With your choice of &nbsp;<math style="vertical-align: -0.1%;">C</math>, is <math>f</math> differentiable at <math style="vertical-align: -3%;">x=1</math>? &nbsp;Use the definition of the derivative to motivate your answer. </font face=Times Roman> </span>
  
 
== Implicit Differentiation ==
 
== Implicit Differentiation ==
<span style="font-size:135%"><font face=Times Roman> 4. Find an equation for the tangent
+
<span style="font-size:135%"><font face=Times Roman>
 +
4. Find an equation for the tangent
 
line to the function &nbsp;<math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math>  at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span>
 
line to the function &nbsp;<math style="vertical-align: -13%;">-x^{3}-2xy+y^{3}=-1</math>  at the point <math style="vertical-align: -15%;">(1,1)</math>. </font face=Times Roman> </span>
  
 
== Derivatives and Graphing ==
 
== Derivatives and Graphing ==
  
<span style="font-size:135%"><font face=Times Roman>5. Consider the function</font face=Times Roman></span>
+
<span style="font-size:135%"><font face=Times Roman>5. Consider the function
 
&nbsp;
 
&nbsp;
<math style="vertical-align: -55%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math>
+
<math style="vertical-align: -42%;">h(x)={\displaystyle \frac{x^{3}}{3}-2x^{2}-5x+\frac{35}{3}}.</math>
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(a) Find the intervals where the function is increasing and decreasing.</font face=Times Roman> </span>
+
&nbsp;&nbsp;(a) Find the intervals where the function is increasing and decreasing.
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(b) Find the local maxima and minima.</font face=Times Roman> </span>
+
&nbsp;&nbsp;(b) Find the local maxima and minima.
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(c) Find the intervals on which <math style="vertical-align: -14%;">f(x)</math> is concave upward and concave
+
&nbsp;&nbsp;(c) Find the intervals on which <math style="vertical-align: -14%;">f(x)</math> is concave upward and concave
downward.</font face=Times Roman> </span>
+
downward.  
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(d) Find all inflection points.</font face=Times Roman> </span>
+
&nbsp;&nbsp;(d) Find all inflection points.
 
<br>
 
<br>
<span style="font-size:135%"><font face=Times Roman>(e) Use the information in the above to sketch the graph of <math style="vertical-align: -14%;">f(x)</math>. </font face=Times Roman> </span>
+
&nbsp;&nbsp;(e) Use the information in the above to sketch the graph of <math style="vertical-align: -14%;">f(x)</math>. </font face=Times Roman> </span>
 
<br>
 
<br>
  
 
== Asymptotes ==
 
== Asymptotes ==
 
<span style="font-size:135%"><font face=Times Roman>6. Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span>
 
<span style="font-size:135%"><font face=Times Roman>6. Find the vertical and horizontal asymptotes of the function</font face=Times Roman> </span>
<br>
+
&nbsp;<math style="vertical-align: -60%;">f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math>
<math>f(x)=\frac{\sqrt{4x^{2}+3}}{10x-20}.</math>
 
 
<br>
 
<br>
  
Line 84: Line 110:
 
== Linear Approximation ==
 
== Linear Approximation ==
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman>8. (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>. </font face=Times Roman> </span>
+
<span style="font-size:135%"> <font face=Times Roman>8. (a) Find the linear approximation <math style="vertical-align: -14%;">L(x)</math> to the function <math style="vertical-align: -14%;">f(x)=\sec x</math> at the point <math style="vertical-align: -14%;">x=\pi/3</math>.  
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman>(b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec(3\pi/7)</math>. </font face=Times Roman> </span>
+
&nbsp;&nbsp;&nbsp;&nbsp;(b) Use <math style="vertical-align: -14%;">L(x)</math> to estimate the value of <math style="vertical-align: -14%;">\sec(3\pi/7)</math>. </font face=Times Roman> </span>
 
<br>
 
<br>
  
Line 97: Line 123:
  
 
== Two Important Theorems ==
 
== Two Important Theorems ==
<span style="font-size:135%"><font face=Times Roman>10. Consider the function</font face=Times Roman> </span>
+
<span style="font-size:135%"><font face=Times Roman>10. Consider the function
 
&nbsp;
 
&nbsp;
 
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math>
 
<math style="vertical-align: -15%;">f(x)=2x^{3}+4x+\sqrt{2}.</math>
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman>(a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has at
+
&nbsp;&nbsp; (a) Use the Intermediate Value Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has at
least one zero. </font face=Times Roman> </span>
+
least one zero.  
 
<br>
 
<br>
<span style="font-size:135%"> <font face=Times Roman> (b) Use Rolle's Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has exactly one zero. </font face=Times Roman> </span>
+
&nbsp;&nbsp; (b) Use Rolle's Theorem to show that <math style="vertical-align: -14%;">f(x)</math> has exactly one zero. </font face=Times Roman> </span>

Latest revision as of 14:20, 11 April 2015

This is a sample final, and is meant to represent the material usually covered in Math 9A. Moreover, it contains enough questions to represent a three hour test. An actual test may or may not be similar.


Limits

1. Find the following limits:
  (a)  

  (b)

  (c)  

  (d)  

  (e) 


 Problem 1. 

 Problem 2. 

 Problem 2a. 

 Problem 3. 

 Problem 3a. 

 Problem 4. 

 Problem 5. 

 Problem 6. 

This is a link test. Problem 7. Does it look big?

This is a link test. Problem 8. Does it look big?

This is a link test. Problem 9. Does it look big?

This is a link test. Problem 10. Does it look big?

This is a link test. Problem 7. Does it look big?

Derivatives

2. Find the derivatives of the following functions:
   (a)  

   (b)  

   (c)
 

Continuity and Differentiability

3. (Version I) Consider the following function:  
  (a) Find a value of   which makes continuous at
  (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

3. (Version II) Consider the following function:  
  (a) Find a value of   which makes continuous at
  (b) With your choice of  , is differentiable at ?  Use the definition of the derivative to motivate your answer.

Implicit Differentiation

4. Find an equation for the tangent line to the function   at the point .

Derivatives and Graphing

5. Consider the function  
  (a) Find the intervals where the function is increasing and decreasing.
  (b) Find the local maxima and minima.
  (c) Find the intervals on which is concave upward and concave downward.
  (d) Find all inflection points.
  (e) Use the information in the above to sketch the graph of .

Asymptotes

6. Find the vertical and horizontal asymptotes of the function  

Optimization


7. A farmer wishes to make 4 identical rectangular pens, each with 500 sq. ft. of area. What dimensions for each pen will use the least amount of total fencing?

<< insert image here >>

Linear Approximation


8. (a) Find the linear approximation to the function at the point .
    (b) Use to estimate the value of .

Related Rates


9. A bug is crawling along the -axis at a constant speed of   . How fast is the distance between the bug and the point changing when the bug is at the origin? (Note that if the distance is decreasing, then you should have a negative answer).

Two Important Theorems

10. Consider the function  
   (a) Use the Intermediate Value Theorem to show that has at least one zero.
   (b) Use Rolle's Theorem to show that has exactly one zero.