Difference between revisions of "009A Sample Midterm 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 1: Line 1:
<span class="exam">Let &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">Consider the following function &nbsp;<math style="vertical-align: -5px"> f:</math>
 +
::<math>f(x) = \left\{
 +
    \begin{array}{lr}
 +
      x^2 &  \text{if }x < 1\\
 +
      \sqrt{x} & \text{if }x \geq 1
 +
    \end{array}
 +
  \right.
 +
</math>
  
<span class="exam">(a) Use the definition of the derivative to compute &nbsp; <math>\frac{dy}{dx}</math> &nbsp; for &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}.</math>
+
<span class="exam">(a) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^-} f(x).</math>
  
<span class="exam">(b) Find the equation of the tangent line to &nbsp;<math style="vertical-align: -5px">y=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
+
<span class="exam">(b) Find &nbsp;<math style="vertical-align: -15px"> \lim_{x\rightarrow 1^+} f(x).</math>
  
 +
<span class="exam">(c) Find &nbsp;<math style="vertical-align: -13px"> \lim_{x\rightarrow 1} f(x).</math>
  
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
+
<span class="exam">(d) Is &nbsp;<math style="vertical-align: -5px">f</math>&nbsp; continuous at &nbsp;<math style="vertical-align: -1px">x=1?</math>&nbsp; Briefly explain.
!Foundations: &nbsp;
+
<hr>
|-
 
|'''1.''' Recall
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp;<math style="vertical-align: -13px">f'(x)=\lim_{h\rightarrow 0}\frac{f(x+h)-f(x)}{h}</math>
 
|-
 
|'''2.''' The equation of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)</math>&nbsp; at the point &nbsp;<math style="vertical-align: -5px">(a,b)</math>&nbsp; is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math style="vertical-align: -5px">y=m(x-a)+b</math>&nbsp; where &nbsp;<math style="vertical-align: -5px">m=f'(a).</math>
 
|}
 
  
 +
(insert picture of handwritten solution)
  
'''Solution:'''
+
[[009A Sample Midterm 1, Problem 3 Detailed Solution|'''<u>Detailed Solution for this Problem</u>''']]
  
'''(a)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|Let &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}.</math>
 
|-
 
|Using the limit definition of the derivative, we have
 
|-
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{f(x+h)-f(x)}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3x-5}}{h}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, we multiply the numerator and denominator by the conjugate of the numerator.
 
|-
 
|Hence, we have
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{f'(x)} & = & \displaystyle{\lim_{h\rightarrow 0} \frac{(\sqrt{3x+3h-5}-\sqrt{3x-5})}{h} \frac{(\sqrt{3x+3h-5}+\sqrt{3x-5})}{(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{(3x+3h-5)-(3x-5)}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3h}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}}\\
 
&&\\
 
& = & \displaystyle{\lim_{h\rightarrow 0} \frac{3}{\sqrt{3x+3h-5}+\sqrt{3x-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{\sqrt{3x-5}+\sqrt{3x-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2\sqrt{3x-5}}.}
 
\end{array}</math>
 
|}
 
 
'''(b)'''
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;
 
|-
 
|We start by finding the slope of the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|Using the derivative calculated in part (a), the slope is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>\begin{array}{rcl}
 
\displaystyle{m} & = & \displaystyle{f'(2)}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2\sqrt{3(2)-5}}}\\
 
&&\\
 
& = & \displaystyle{\frac{3}{2}.}
 
\end{array}</math>
 
|}
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
|-
 
|Now, the tangent line to &nbsp;<math style="vertical-align: -5px">f(x)=\sqrt{3x-5}</math>&nbsp; at &nbsp;<math style="vertical-align: -5px">(2,1)</math>
 
|-
 
|has slope &nbsp;<math style="vertical-align: -13px">m=\frac{3}{2}</math>&nbsp; and passes through the point &nbsp;<math style="vertical-align: -5px">(2,1).</math>
 
|-
 
|Hence, the equation of this line is
 
|-
 
|&nbsp; &nbsp; &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1.</math>
 
|}
 
 
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Final Answer: &nbsp;
 
|-
 
|&nbsp; &nbsp; '''(a)''' &nbsp; &nbsp; <math>\frac{3}{2\sqrt{3x-5}}</math>
 
|-
 
|&nbsp; &nbsp; '''(b)''' &nbsp; &nbsp; <math>y=\frac{3}{2}(x-2)+1</math>
 
|}
 
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]
 
[[009A_Sample_Midterm_1|'''<u>Return to Sample Exam</u>''']]

Revision as of 07:51, 3 November 2017

Consider the following function  

(a) Find  

(b) Find  

(c) Find  

(d) Is    continuous at    Briefly explain.


(insert picture of handwritten solution)

Detailed Solution for this Problem

Return to Sample Exam