Difference between revisions of "007B Sample Midterm 1"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''This is a sample, and is meant to represent the material usually covered in Math 9B for the midterm. An actual test may or may not be similar.'''  
+
'''This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.'''  
  
 
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
'''Click on the''' '''<span class="biglink" style="color:darkblue;">&nbsp;boxed problem numbers&nbsp;</span> to go to a solution.'''
 
<div class="noautonum">__TOC__</div>
 
<div class="noautonum">__TOC__</div>
  
== [[009B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
+
== [[007B_Sample Midterm 1,_Problem_1|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 1&nbsp;</span></span>]] ==
 
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
 
<span class="exam"> Let &nbsp;<math style="vertical-align: -5px">f(x)=1-x^2</math>.
  
Line 13: Line 13:
 
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
 
<span class="exam">(c) Express &nbsp;<math style="vertical-align: -14px">\int_0^3 f(x)~dx</math>&nbsp; as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.
  
== [[009B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
+
== [[007B_Sample Midterm 1,_Problem_2|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 2&nbsp;</span>]] ==
 
<span class="exam"> A population grows at a rate  
 
<span class="exam"> A population grows at a rate  
  
 
::<math>P'(t)=500e^{-t}</math>
 
::<math>P'(t)=500e^{-t}</math>
  
<span class="exam">where &nbsp;<math>P(t)</math>&nbsp; is the population after &nbsp;<math>t</math>&nbsp; months.
+
<span class="exam">where &nbsp;<math style="vertical-align: -5px">P(t)</math>&nbsp; is the population after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months.
  
<span class="exam">(a) &nbsp; Find a formula for the population size after &nbsp;<math>t</math>&nbsp; months, given that the population is &nbsp;<math>2000</math>&nbsp; at &nbsp;<math>t=0.</math>
+
<span class="exam">(a) &nbsp; Find a formula for the population size after &nbsp;<math style="vertical-align: 0px">t</math>&nbsp; months, given that the population is &nbsp;<math style="vertical-align: 0px">2000</math>&nbsp; at &nbsp;<math style="vertical-align: 0px">t=0.</math>
  
<span class="exam">(b) &nbsp; Use your answer to part (a) to find the size of the population after one month.  
+
<span class="exam">(b) &nbsp; Use your answer to part (a) to find the size of the population after one month.
  
== [[009B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
+
== [[007B_Sample Midterm 1,_Problem_3|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 3&nbsp;</span>]] ==
 
<span class="exam">Evaluate the following integrals.
 
<span class="exam">Evaluate the following integrals.
  
Line 31: Line 31:
 
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
 
<span class="exam">(b) &nbsp; <math>\int _{\frac{\pi}{4}}^{\frac{\pi}{2}} \frac{\cos(x)}{\sin^2(x)}~dx</math>
  
== [[009B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
+
== [[007B_Sample Midterm 1,_Problem_4|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 4&nbsp;</span>]] ==
 
<span class="exam"> Evaluate the following integrals.  
 
<span class="exam"> Evaluate the following integrals.  
  
Line 38: Line 38:
 
<span class="exam">(b) &nbsp; <math>\int \frac{5x-7}{x^2-3x+2}~dx</math>
 
<span class="exam">(b) &nbsp; <math>\int \frac{5x-7}{x^2-3x+2}~dx</math>
  
== [[009B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
+
== [[007B_Sample Midterm 1,_Problem_5|<span class="biglink"><span style="font-size:80%">&nbsp;Problem 5&nbsp;</span>]] ==
<span class="exam"> Find the area bounded by &nbsp;<math>y=\sin(x)</math>&nbsp; and &nbsp;<math>y=\cos(x)</math>&nbsp; from &nbsp;<math>x=0</math>&nbsp; to &nbsp;<math>x=\frac{\pi}{4}.</math>
+
<span class="exam"> Find the area bounded by &nbsp;<math style="vertical-align: -5px">y=\sin(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">y=\cos(x)</math>&nbsp; from &nbsp;<math style="vertical-align: -1px">x=0</math>&nbsp; to &nbsp;<math style="vertical-align: -14px">x=\frac{\pi}{4}.</math>
  
  
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''
 
'''Contributions to this page were made by [[Contributors|Kayla Murray]]'''

Latest revision as of 16:01, 2 November 2017

This is a sample, and is meant to represent the material usually covered in Math 7B for the midterm. An actual test may or may not be similar.

Click on the  boxed problem numbers  to go to a solution.

 Problem 1 

Let  .

(a) Compute the left-hand Riemann sum approximation of    with    boxes.

(b) Compute the right-hand Riemann sum approximation of    with    boxes.

(c) Express    as a limit of right-hand Riemann sums (as in the definition of the definite integral). Do not evaluate the limit.

 Problem 2 

A population grows at a rate

where    is the population after    months.

(a)   Find a formula for the population size after    months, given that the population is    at  

(b)   Use your answer to part (a) to find the size of the population after one month.

 Problem 3 

Evaluate the following integrals.

(a)  

(b)  

 Problem 4 

Evaluate the following integrals.

(a)  

(b)  

 Problem 5 

Find the area bounded by    and    from    to  


Contributions to this page were made by Kayla Murray