Difference between revisions of "Integration by Parts"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(25 intermediate revisions by the same user not shown) | |||
Line 25: | Line 25: | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{f(x)g(x)} & = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\ | + | \displaystyle{f(x)g(x)} & = & \displaystyle{\int (f(x)g(x))'~dx}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{\int f'(x)g(x)+f(x)g'(x)~dx}\\ | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.} | & = & \displaystyle{\int f'(x)g(x)~dx+\int f(x)g'(x)~dx.} | ||
Line 51: | Line 53: | ||
Evaluate the following integrals. | Evaluate the following integrals. | ||
− | '''1)''' <math style="vertical-align: - | + | '''1)''' <math style="vertical-align: -13px">\int xe^x~dx</math> |
{| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | {| class = "mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |We have two options when doing integration by parts. |
− | |||
− | |||
− | |||
− | |||
− | |||
|- | |- | ||
− | | | + | |We can let <math style="vertical-align: 0px">u=x</math> or <math style="vertical-align: 0px">u=e^x.</math> |
− | |||
|- | |- | ||
+ | |In this case, we let <math style="vertical-align: 0px">u</math> be the polynomial. | ||
|- | |- | ||
− | |<u> | + | |So, we let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^x~dx.</math> |
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: 0px">v=e^x.</math> |
|- | |- | ||
− | | | + | |Hence, by integration by parts, we get |
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int xe^x~dx} & = & \displaystyle{xe^x-\int e^x~dx}\\ |
− | |||
− | & = & \displaystyle{ | ||
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{x^ | + | & = & \displaystyle{xe^x-e^x+C.} |
\end{array}</math> | \end{array}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 95: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math> | + | | <math>xe^x-e^x+C</math> |
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 108: | Line 90: | ||
|- | |- | ||
| | | | ||
− | + | We have a choice to make. | |
|- | |- | ||
− | | | + | |We can let <math style="vertical-align: 0px">u=x</math> or <math style="vertical-align: -5px">u=\cos(2x).</math> |
− | + | |- | |
+ | |In this case, we let <math style="vertical-align: 0px">u</math> be the polynomial. | ||
|- | |- | ||
− | | | + | |So, we let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: -5px">dv=\cos(2x)~dx.</math> |
|- | |- | ||
− | | | + | |Then, <math style="vertical-align: 0px">du=dx.</math> |
− | |||
|- | |- | ||
− | |< | + | |To find <math style="vertical-align: -4px">v,</math> we need to use <math style="vertical-align: 0px">u-</math>substitution. So, |
|- | |- | ||
− | | | + | | |
+ | ::<math style="vertical-align: -13px">v=\int \cos(2x)~dx=\frac{1}{2} \sin(2x).</math> | ||
|- | |- | ||
− | | | + | |Hence, by integration by parts, we get |
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int x\cos(2x)~dx} & = & \displaystyle{\frac{1}{2}x\sin(2x)-\int \frac{1}{2}\sin(2x)~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C,} |
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | | | + | |where we use <math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral. |
− | |||
− | |||
− | : | ||
|} | |} | ||
Line 142: | Line 120: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | + | | <math>\frac{1}{2}x\sin(2x)+\frac{1}{4}\cos(2x)+C</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
|} | |} | ||
Line 156: | Line 128: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | | | + | |We have a choice to make. |
+ | |- | ||
+ | |We can let <math style="vertical-align: -1px">u=\ln x</math> or <math style="vertical-align: -1px">dv=\ln x~dx.</math> | ||
+ | |- | ||
+ | |In this case, we don't want to let <math style="vertical-align: -1px">dv=\ln x~dx</math> since we don't know how to integrate <math style="vertical-align: -1px">\ln x</math> yet. | ||
+ | |- | ||
+ | |So, we let <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: -1px">dv=1~dx.</math> | ||
+ | |- | ||
+ | |Then, <math style="vertical-align: -13px">du=\frac{1}{x}~dx</math> and <math style="vertical-align: 0px">v=x.</math> | ||
+ | |- | ||
+ | |Hence, by integration by parts, we get | ||
|- | |- | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int \ln x~dx} & = & \displaystyle{x\ln (x) -\int x \bigg(\frac{1}{x}\bigg)~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ | + | & = & \displaystyle{x\ln (x)-\int 1~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{x\ln (x)-x+C.} |
− | |||
− | |||
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
|- | |- | ||
− | | | + | |<u>Note:</u> The domain of the function <math style="vertical-align: -1px">\ln x</math> is <math style="vertical-align: -5px">(0,\infty).</math> |
|- | |- | ||
− | | | + | |So, this integral is defined for <math style="vertical-align: 0px">x>0.</math> |
− | |||
− | |||
− | |||
|} | |} | ||
Line 182: | Line 157: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | <math> | + | | <math>x\ln (x)-x+C</math> |
|- | |- | ||
|} | |} | ||
Line 188: | Line 163: | ||
== Exercise 1 == | == Exercise 1 == | ||
− | Evaluate <math style="vertical-align: -13px">\int x^ | + | Evaluate <math style="vertical-align: -13px">\int x \sec^2 x~dx.</math> |
+ | |||
+ | Since we know the antiderivative of <math style="vertical-align: -3px">\sec^2 x,</math> | ||
− | + | we let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=\sec^2 x~dx.</math> | |
− | : | + | Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: -1px">v=\tan x.</math> |
− | + | Using integration by parts, we get | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{\ | + | \displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x -\int \tan x~dx}\\ |
− | |||
− | |||
− | |||
− | & = & \displaystyle{ | ||
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{-\ | + | & = & \displaystyle{x\tan x -\int \frac{\sin x}{\cos x}~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | + | For the remaining integral, we use <math style="vertical-align: 0px">u-</math>substitution. | |
+ | |||
+ | Let <math style="vertical-align: 0px">u=\cos x.</math> Then, <math style="vertical-align: -1px">du=-\sin x~dx.</math> | ||
+ | |||
+ | So, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int x \sec^2 x~dx} & = & \displaystyle{x\tan x +\int \frac{1}{u}~du}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle | + | & = & \displaystyle{x\tan x + \ln |u|+C}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{x\tan x+ \ln |\cos x|+C.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>\int x \sec^2 x~dx=x\tan x+ \ln |\cos x|+C.</math> |
== Exercise 2 == | == Exercise 2 == | ||
− | Evaluate <math style="vertical-align: - | + | Evaluate <math style="vertical-align: -13px">\int \frac{\ln x}{x^3}~dx.</math> |
− | + | We start by letting <math style="vertical-align: -1px">u=\ln x</math> and <math style="vertical-align: -13px">dv=\frac{1}{x^3}~dx.</math> | |
− | + | Then, <math style="vertical-align: -13px">du=\frac{1}{x}~dx</math> and <math style="vertical-align: -13px">v=-\frac{1}{2x^2}.</math> | |
− | + | So, using integration by parts, we get | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int \frac{\ln x}{x^3}~dx} & = & \displaystyle{-\frac{\ln x}{2x^2}-\int -\frac{1}{2x^2}\bigg(\frac{1}{x}\bigg)~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{-\frac{\ln x}{2x^2}+\int \frac{1}{2x^3}~dx}\\ |
− | |||
− | |||
− | |||
− | |||
− | |||
− | \ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | |||
− | + | ::<math>\int \frac{\ln x}{x^3}~dx=-\frac{\ln x}{2x^2}-\frac{1}{4x^2}+C.</math> | |
− | + | == Exercise 3 == | |
− | + | Evaluate <math style="vertical-align: -13px">\int x\sqrt{x+1}~dx.</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | We start by letting <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: -3px">dv=\sqrt{x+1}~dx.</math> | |
− | |||
− | == | ||
− | + | Then, <math style="vertical-align: 0px">du=dx.</math> | |
− | + | To find <math style="vertical-align: -4px">v,</math> we need to use <math style="vertical-align: 0px">u-</math>substitution. So, | |
− | ::<math> | + | ::<math style="vertical-align: 0px">v=\int \sqrt{x+1}~dx=\frac{2}{3}(x+1)^{\frac{3}{2}}.</math> |
− | + | Hence, by integration by parts, we get | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int x\sqrt{x+1}~dx} & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\int \frac{2}{3}(x+1)^{\frac{3}{2}}~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C,} |
\end{array}</math> | \end{array}</math> | ||
− | So, we | + | where we use <math style="vertical-align: 0px">u-</math> substitution to evaluate the last integral. |
− | ::<math> | + | |
+ | So, we have | ||
+ | |||
+ | ::<math>\int x\sqrt{x+1}~dx=\frac{2}{3}x(x+1)^{\frac{3}{2}}-\frac{4}{15}(x+1)^{\frac{5}{2}}+C.</math> | ||
== Exercise 4 == | == Exercise 4 == | ||
− | Evaluate <math style="vertical-align: - | + | Evaluate <math style="vertical-align: -13px">\int x^2e^{-2x}~dx.</math> |
+ | |||
+ | We start by letting <math style="vertical-align: 0px">u=x^2</math> and <math style="vertical-align: 0px">dv=e^{-2x}~dx.</math> | ||
− | + | Then, <math style="vertical-align: 0px">du=2x~dx.</math> | |
+ | |||
+ | To find <math style="vertical-align: -4px">v,</math> we need to use <math style="vertical-align: 0px">u-</math>substitution. So, | ||
+ | |||
+ | ::<math style="vertical-align: 0px">v=\int e^{-2x}~dx=\frac{e^{-2x}}{-2}.</math> | ||
+ | |||
+ | Hence, by integration by parts, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2e^{-2x}}{-2}-\int 2x\bigg(\frac{e^{-2x}}{-2}\bigg)~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{x^ | + | & = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\int xe^{-2x}~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | Now, we need to use | + | Now, we need to use integration by parts a second time. |
+ | |||
+ | Let <math style="vertical-align: 0px">u=x</math> and <math style="vertical-align: 0px">dv=e^{-2x}~dx.</math> | ||
+ | |||
+ | Then, <math style="vertical-align: 0px">du=dx</math> and <math style="vertical-align: -13px">v=\frac{e^{-2x}}{-2}.</math> | ||
+ | |||
+ | Therefore, using integration by parts again, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int x^2 e^{-2x}~dx} & = & \displaystyle{\frac{x^2 e^{-2x} }{-2}+\frac{x e^{-2x} }{-2}-\int \frac{e^{-2x}}{-2}~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{x^2\ | + | & = & \displaystyle{\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>\int x^2e^{-2x}~dx=\frac{x^2e^{-2x}}{-2}+\frac{xe^{-2x}}{-2}+\frac{e^{-2x}}{-4}+C.</math> |
== Exercise 5 == | == Exercise 5 == | ||
− | Evaluate <math style="vertical-align: - | + | Evaluate <math style="vertical-align: -13px">\int e^{3x}\sin(2x)~dx.</math> |
− | + | We begin by letting <math style="vertical-align: -6px">u=\sin(2x)</math> and <math style="vertical-align: 0px">dv=e^{3x}~dx.</math> | |
+ | |||
+ | Then, <math style="vertical-align: -5px">du=2\cos (2x)~dx.</math> | ||
+ | |||
+ | To find <math style="vertical-align: -4px">v,</math> we need to use <math style="vertical-align: 0px">u-</math>substitution. So, | ||
+ | |||
+ | ::<math style="vertical-align: 0px">v=\int e^{3x}~dx=\frac{e^{3x}}{3}.</math> | ||
+ | |||
+ | Hence, by integration by parts, we have | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\int \frac{2}{3}\cos(2x)e^{3x}~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \int \cos(2x)e^{3x}~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | Now, we need to use | + | Now, we need to use integration by parts a second time. |
+ | |||
+ | Let <math style="vertical-align: -5px">u=\cos (2x)</math> and <math style="vertical-align: 0px">dv=e^{3x}~dx.</math> | ||
+ | |||
+ | Then, <math style="vertical-align: -5px">du=-2\sin(2x)~dx</math> and <math style="vertical-align: -13px">v=\frac{e^{3x}}{3}.</math> | ||
+ | |||
+ | Therefore, using integration by parts again, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int e^{3x} \sin(2x)~dx} & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2}{3} \bigg[ \frac{\cos(2x)e^{3x}}{3}+\int \frac{2}{3}\sin(2x)e^{3x}~dx\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}-\frac{4}{9}\int e^{3x}\sin(2x)~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | So, we | + | Now, we have the exact same integral that we had at the beginning of the problem. |
− | ::<math> | + | |
+ | So, we add this integral to the other side of the equation. | ||
+ | |||
+ | When we do this, we get | ||
+ | |||
+ | ::<math>\frac{13}{9} \int e^{3x}\sin(2x)~dx = \frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}.</math> | ||
+ | |||
+ | Therefore, we get | ||
+ | |||
+ | ::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{13}\bigg(\frac{e^{3x}\sin(2x)}{3}-\frac{2\cos(2x)e^{3x}}{9}\bigg)+C.</math> | ||
== Exercise 6 == | == Exercise 6 == | ||
Line 329: | Line 330: | ||
Evaluate <math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math> | Evaluate <math style="vertical-align: -14px">\int \sin(2x)\cos(3x)~dx.</math> | ||
− | + | For this problem, we use a similar process as Exercise 5. | |
+ | |||
+ | We use integration by parts twice, which produces the same integral given to us in the problem. | ||
+ | |||
+ | Then, we solve for our integral. | ||
+ | |||
+ | We begin by letting <math style="vertical-align: -5px">u=\sin(2x)</math> and <math style="vertical-align: -5px">dv=\cos(3x)~dx.</math> | ||
+ | |||
+ | Then, <math style="vertical-align: -5px">du=2\cos (2x)~dx.</math> | ||
+ | |||
+ | To find <math style="vertical-align: -4px">v,</math> we need to use <math style="vertical-align: 0px">u-</math>substitution. So, | ||
+ | |||
+ | ::<math style="vertical-align: 0px">v=\int \cos(3x)~dx=\frac{1}{3}\sin(3x).</math> | ||
+ | |||
+ | Hence, by integration by parts, we have | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\int \frac{2}{3}\cos(2x)\sin(3x)~dx}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \int \cos(2x)\sin(3x)~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | Now, we need to use | + | Now, we need to use integration by parts a second time. |
+ | |||
+ | Let <math style="vertical-align: -5px">u=\cos (2x)</math> and <math style="vertical-align: -5px">dv=\sin(3x)~dx.</math> | ||
+ | |||
+ | Then, <math style="vertical-align: -5px">du=-2\sin(2x)~dx</math> and <math style="vertical-align: -13px">v=\frac{-\cos(3x)}{3}.</math> | ||
+ | |||
+ | Therefore, using integration by parts again, we get | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{\int \sin(2x)\cos(3x)~dx} & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)-\frac{2}{3} \bigg[ \frac{-\cos(2x)\cos(3x)}{3}-\int \frac{2}{3}\sin(2x)\cos(3x)~dx\bigg]}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{ | + | & = & \displaystyle{\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}+\frac{4}{9}\int \sin(2x)\cos(3x)~dx.} |
\end{array}</math> | \end{array}</math> | ||
− | So, we | + | Now, we have the exact same integral that we had at the beginning of the problem. |
− | ::<math> | + | |
+ | So, we subtract this integral to the other side of the equation. | ||
+ | |||
+ | When we do this, we get | ||
+ | |||
+ | ::<math>\frac{5}{9} \int \sin(2x)\cos(3x)~dx = \frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}.</math> | ||
+ | |||
+ | Therefore, we get | ||
+ | |||
+ | ::<math> \int e^{3x}\sin(2x)~dx = \frac{9}{5}\bigg(\frac{1}{3}\sin(2x)\sin(3x)+ \frac{2\cos(2x)\cos(3x)}{9}\bigg)+C.</math> |
Latest revision as of 12:17, 30 October 2017
Introduction
Let's say we want to integrate
Here, we can compute this antiderivative by using substitution.
While substitution is an important integration technique, it will not help us evaluate all integrals.
For example, consider the integral
There is no substitution that will allow us to integrate this integral.
We need another integration technique called integration by parts.
The formula for integration by parts comes from the product rule for derivatives.
Recall from the product rule,
Then, we have
If we solve the last equation for the second integral, we obtain
This formula is the formula for integration by parts.
But, as it is currently stated, it is long and hard to remember.
So, we make a substitution to obtain a nicer formula.
Let and
Then, and
Plugging these into our formula, we obtain
Warm-Up
Evaluate the following integrals.
1)
Solution: |
---|
We have two options when doing integration by parts. |
We can let or |
In this case, we let be the polynomial. |
So, we let and |
Then, and |
Hence, by integration by parts, we get |
|
Final Answer: |
---|
2)
Solution: |
---|
We have a choice to make. |
We can let or |
In this case, we let be the polynomial. |
So, we let and |
Then, |
To find we need to use substitution. So, |
|
Hence, by integration by parts, we get |
|
where we use substitution to evaluate the last integral. |
Final Answer: |
---|
3)
Solution: |
---|
We have a choice to make. |
We can let or |
In this case, we don't want to let since we don't know how to integrate yet. |
So, we let and |
Then, and |
Hence, by integration by parts, we get |
|
Note: The domain of the function is |
So, this integral is defined for |
Final Answer: |
---|
Exercise 1
Evaluate
Since we know the antiderivative of
we let and
Then, and
Using integration by parts, we get
For the remaining integral, we use substitution.
Let Then,
So, we get
So, we have
Exercise 2
Evaluate
We start by letting and
Then, and
So, using integration by parts, we get
So, we have
Exercise 3
Evaluate
We start by letting and
Then,
To find we need to use substitution. So,
Hence, by integration by parts, we get
where we use substitution to evaluate the last integral.
So, we have
Exercise 4
Evaluate
We start by letting and
Then,
To find we need to use substitution. So,
Hence, by integration by parts, we get
Now, we need to use integration by parts a second time.
Let and
Then, and
Therefore, using integration by parts again, we get
So, we have
Exercise 5
Evaluate
We begin by letting and
Then,
To find we need to use substitution. So,
Hence, by integration by parts, we have
Now, we need to use integration by parts a second time.
Let and
Then, and
Therefore, using integration by parts again, we get
Now, we have the exact same integral that we had at the beginning of the problem.
So, we add this integral to the other side of the equation.
When we do this, we get
Therefore, we get
Exercise 6
Evaluate
For this problem, we use a similar process as Exercise 5.
We use integration by parts twice, which produces the same integral given to us in the problem.
Then, we solve for our integral.
We begin by letting and
Then,
To find we need to use substitution. So,
Hence, by integration by parts, we have
Now, we need to use integration by parts a second time.
Let and
Then, and
Therefore, using integration by parts again, we get
Now, we have the exact same integral that we had at the beginning of the problem.
So, we subtract this integral to the other side of the equation.
When we do this, we get
Therefore, we get