Difference between revisions of "Chain Rule"

From Grad Wiki
Jump to navigation Jump to search
 
(3 intermediate revisions by the same user not shown)
Line 20: Line 20:
 
Let &nbsp;<math style="vertical-align: -6px">y=f(u)</math>&nbsp; be a differentiable function of &nbsp;<math style="vertical-align: -1px">u</math>&nbsp; and let &nbsp;<math style="vertical-align: -6px">u=g(x)</math>&nbsp; be a differentiable function of &nbsp;<math style="vertical-align: -1px">x.</math>&nbsp;  
 
Let &nbsp;<math style="vertical-align: -6px">y=f(u)</math>&nbsp; be a differentiable function of &nbsp;<math style="vertical-align: -1px">u</math>&nbsp; and let &nbsp;<math style="vertical-align: -6px">u=g(x)</math>&nbsp; be a differentiable function of &nbsp;<math style="vertical-align: -1px">x.</math>&nbsp;  
  
Then, &nbsp;<math style="vertical-align: -5px">y=f(g(x))</math>&nbsp; is a differentiable function of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; and  
+
Then, &nbsp;<math style="vertical-align: -5px">y=f\circ g(x))</math>&nbsp; is a differentiable function of &nbsp;<math style="vertical-align: 0px">x</math>&nbsp; and  
  
::<math>y'=f'(g(x))\cdot g'(x).</math>
+
::<math>y'=(f'\circ g(x))\cdot g'(x).</math>
  
 
==Warm-Up==
 
==Warm-Up==
Line 36: Line 36:
 
|Then, &nbsp;<math style="vertical-align: -5px">f'(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=3.</math>
 
|Then, &nbsp;<math style="vertical-align: -5px">f'(x)=\cos(x)</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=3.</math>
 
|-
 
|-
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f(g(x)).</math>
+
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f\circ g(x).</math>
 
|-
 
|-
 
|Using the Chain Rule, we have
 
|Using the Chain Rule, we have
Line 42: Line 42:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{f'(g(x))\cdot g'(x)}\\
+
\displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\cos (3x)\cdot 3}\\
 
& = & \displaystyle{\cos (3x)\cdot 3}\\
Line 65: Line 65:
 
|Then, &nbsp;<math style="vertical-align: -5px">f'(x)=8x^7</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=1.</math>
 
|Then, &nbsp;<math style="vertical-align: -5px">f'(x)=8x^7</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=1.</math>
 
|-
 
|-
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f(g(x)).</math>
+
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f\circ g(x).</math>
 
|-
 
|-
 
|Using the Chain Rule, we have
 
|Using the Chain Rule, we have
Line 71: Line 71:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{f'(g(x))\cdot g'(x)}\\
+
\displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{8(x+1)^7\cdot 1}\\
 
& = & \displaystyle{8(x+1)^7\cdot 1}\\
Line 94: Line 94:
 
|Then, &nbsp;<math style="vertical-align: -13px">f'(x)=\frac{1}{x}</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=2x.</math>
 
|Then, &nbsp;<math style="vertical-align: -13px">f'(x)=\frac{1}{x}</math>&nbsp; and &nbsp;<math style="vertical-align: -5px">g'(x)=2x.</math>
 
|-
 
|-
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f(g(x)).</math>
+
|Now, &nbsp;<math style="vertical-align: -6px">h(x)=f\circ g(x).</math>
 
|-
 
|-
 
|Using the Chain Rule, we have
 
|Using the Chain Rule, we have
Line 100: Line 100:
 
|
 
|
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{f'(g(x))\cdot g'(x)}\\
+
\displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\frac{1}{x^2}\cdot 2x}\\
 
& = & \displaystyle{\frac{1}{x^2}\cdot 2x}\\
Line 134: Line 134:
 
== Exercise 2 ==
 
== Exercise 2 ==
  
Calculate the derivative of &nbsp;<math style="vertical-align: -5px">g(x)=2x\sin x \sec x.</math>
+
Calculate the derivative of &nbsp;<math style="vertical-align: -6px">h(x)=\sin^3(2x^2+x+1).</math>
  
Notice that the function &nbsp;<math style="vertical-align: -5px">g(x)</math>&nbsp; is the product of three functions.
+
First, notice &nbsp;<math style="vertical-align: -6px">h(x)=(\sin(2x^2+x+1))^3.</math>  
  
We start by grouping two of the functions together. So, we have &nbsp;<math style="vertical-align: -5px">g(x)=(2x\sin x)\sec x.</math>
+
Using the Chain Rule, we have
  
Using the Product Rule, we get
+
::<math>h'(x)=3(\sin(2x^2+x+1))^2 \cdot (\sin(2x^2+x+1))'.</math>
 
 
::<math>\begin{array}{rcl}
 
\displaystyle{g'(x)} & = & \displaystyle{(2x\sin x)(\sec x)'+(2x\sin x)'\sec x}\\
 
&&\\
 
& = & \displaystyle{(2x\sin x)(\tan^2 x)+(2x\sin x)'\sec x.}
 
\end{array}</math>
 
  
Now, we need to use the Product Rule again. So,
+
Now, we need to use the Chain Rule a second time. So, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{g'(x)} & = & \displaystyle{2x\sin x\tan^2 x+(2x(\sin x)'+(2x)'\sin x)\sec x}\\
+
\displaystyle{h'(x)} & = & \displaystyle{3(\sin(2x^2+x+1))^2 \cos(2x^2+x+1)\cdot (2x^2+x+1)'}\\
 
&&\\
 
&&\\
& = & \displaystyle{2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.}
+
& = & \displaystyle{3\sin^2(2x^2+x+1) \cos(2x^2+x+1)(4x+1).}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>g'(x)=2x\sin x\tan^2 x+(2x\cos x+2\sin x)\sec x.</math>
+
::<math>h'(x)=3\sin^2(2x^2+x+1) \cos(2x^2+x+1)(4x+1).</math>
  
But, there is another way to do this problem. Notice
+
== Exercise 3 ==
 
 
::<math>\begin{array}{rcl}
 
\displaystyle{g(x)} & = & \displaystyle{2x\sin x\sec x}\\
 
&&\\
 
& = & \displaystyle{2x\sin x\frac{1}{\cos x}}\\
 
&&\\
 
& = & \displaystyle{2x\tan x.}
 
\end{array}</math>
 
  
Now, you would only need to use the Product Rule once instead of twice.
+
Calculate the derivative of &nbsp;<math style="vertical-align: -6px">h(x)=\cos (2x+1)\sin(x^2+3x).</math>
  
== Exercise 3 ==
+
Using the Product Rule, we have
  
Calculate the derivative of &nbsp;<math style="vertical-align: -16px">h(x)=\frac{x^2\sin x+1}{x^2\cos x+3}.</math>
+
::<math>h'(x)=\cos(2x+1)(\sin(x^2+3x))'+(\cos(2x+1))'\sin(x^2+3x).</math>
  
Using the Quotient Rule, we have
+
For the two remaining derivatives, we need to use the Chain Rule.
  
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\sin x+1)'-(x^2\sin x+1)(x^2\cos x+3)'}{(x^2\cos x+3)^2}.</math>
+
So, using the Chain Rule, we have
 
 
Now, we need to use the Product Rule. So, we have
 
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2\cos x+3)(x^2(\sin x)'+(x^2)'\sin x)-(x^2\sin x+1)(x^2(\cos x)'+(x^2)'\cos x)}{(x^2\cos x+3)^2}}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\cos(2x+1)\cos(x^2+3x)\cdot (x^2+3x)'-\sin(2x+1)\cdot (2x+1)'\sin(x^2+3x)}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.}
+
& = & \displaystyle{\cos(2x+1)\cos(x^2+3x) (2x+3)-\sin(2x+1)(2)\sin(x^2+3x).}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we get
 
So, we get
::<math>h'(x)=\frac{(x^2\cos x+3)(x^2\cos x+2x\sin x)-(x^2\sin x+1)(-x^2\sin x+2x\cos x)}{(x^2\cos x+3)^2}.</math>
+
::<math>h'(x)=\cos(2x+1)\cos(x^2+3x) (2x+3)-\sin(2x+1)(2)\sin(x^2+3x).</math>
  
 
== Exercise 4 ==
 
== Exercise 4 ==
  
Calculate the derivative of  &nbsp;<math style="vertical-align: -14px">f(x)=\frac{e^x}{x^2\sin x}.</math>
+
Calculate the derivative of  &nbsp;<math style="vertical-align: -16px">h(x)=\frac{\sin(3x)+x\cos(2x)}{x^2+1}.</math>
  
 
First, using the Quotient Rule, we have
 
First, using the Quotient Rule, we have
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x (e^x)'-e^x(x^2\sin x)'}{(x^2\sin x)^2}}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)(\sin(3x)+x\cos(2x))'-(\sin(3x)+x\cos(2x))(x^2+1)'}{(x^2+1)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+(x\cos(2x))']-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.}
 +
\end{array}</math>
 +
 
 +
Using the Product Rule, we get
 +
 
 +
::<math>\begin{array}{rcl}
 +
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+x(\cos(2x))'+(x)'\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\sin x)'}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+x(\cos(2x))'+1\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.}
 
\end{array}</math>
 
\end{array}</math>
  
Now, we need to use the Product Rule. So, we have
+
For the remaining derivatives, we need to use the Chain Rule. So, we get
  
 
::<math>\begin{array}{rcl}
 
::<math>\begin{array}{rcl}
\displaystyle{f'(x)} & = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2(\sin x)'+(x^2)'\sin x)}{x^4\sin^2 x}}\\
+
\displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)[\cos(3x)(3x)'+x(-\sin(2x))(2x)'+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.}
+
& = & \displaystyle{\frac{(x^2+1)[\cos(3x)(3)-x\sin(2x)(2)+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.}
 
\end{array}</math>
 
\end{array}</math>
  
 
So, we have  
 
So, we have  
::<math>f'(x)=\frac{x^2\sin x e^x - e^x(x^2\cos x+2x\sin x)}{x^4\sin^2 x}.</math>
+
::<math>h'(x)=\frac{(x^2+1)[\cos(3x)(3)-x\sin(2x)(2)+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.</math>

Latest revision as of 14:20, 15 October 2017

Introduction

It is relatively easy to calculate the derivatives of simple functions, like polynomials or trigonometric functions.

But, what about more complicated functions?

For example,    or  

Well, the key to calculating the derivatives of these functions is to recognize that these functions are compositions.

For    it is the composition of the function    with  

Similarly, for    it is the composition of    and  

So, how do we take the derivative of compositions?

The answer to this question is exactly the Chain Rule.

Chain Rule

Let    be a differentiable function of    and let    be a differentiable function of   

Then,    is a differentiable function of    and

Warm-Up

Calculate  

1)  

Solution:  
Let    and  
Then,    and  
Now,  
Using the Chain Rule, we have
Final Answer:  
       

2)  

Solution:  
Let    and  
Then,    and  
Now,  
Using the Chain Rule, we have
Final Answer:  
       

3)  

Solution:  
Let    and  
Then,    and  
Now,  
Using the Chain Rule, we have
Final Answer:  
       

Exercise 1

Calculate the derivative of  

Using the Chain Rule, we have

So, we have

Exercise 2

Calculate the derivative of  

First, notice  

Using the Chain Rule, we have

Now, we need to use the Chain Rule a second time. So, we get

So, we have

Exercise 3

Calculate the derivative of  

Using the Product Rule, we have

For the two remaining derivatives, we need to use the Chain Rule.

So, using the Chain Rule, we have

So, we get

Exercise 4

Calculate the derivative of  

First, using the Quotient Rule, we have

Using the Product Rule, we get

For the remaining derivatives, we need to use the Chain Rule. So, we get

So, we have