Difference between revisions of "Chain Rule"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 20: | Line 20: | ||
Let <math style="vertical-align: -6px">y=f(u)</math> be a differentiable function of <math style="vertical-align: -1px">u</math> and let <math style="vertical-align: -6px">u=g(x)</math> be a differentiable function of <math style="vertical-align: -1px">x.</math> | Let <math style="vertical-align: -6px">y=f(u)</math> be a differentiable function of <math style="vertical-align: -1px">u</math> and let <math style="vertical-align: -6px">u=g(x)</math> be a differentiable function of <math style="vertical-align: -1px">x.</math> | ||
− | Then, <math style="vertical-align: -5px">y=f | + | Then, <math style="vertical-align: -5px">y=f\circ g(x))</math> is a differentiable function of <math style="vertical-align: 0px">x</math> and |
− | ::<math>y'=f' | + | ::<math>y'=(f'\circ g(x))\cdot g'(x).</math> |
==Warm-Up== | ==Warm-Up== | ||
Line 32: | Line 32: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | |Let <math>f(x)=\sin (x)</math> and <math>g(x)=3x.</math> | + | |Let <math style="vertical-align: -5px">f(x)=\sin (x)</math> and <math style="vertical-align: -5px">g(x)=3x.</math> |
|- | |- | ||
− | |Then, <math>f'(x)=\cos(x)</math> and <math>g'(x)=3.</math> | + | |Then, <math style="vertical-align: -5px">f'(x)=\cos(x)</math> and <math style="vertical-align: -5px">g'(x)=3.</math> |
|- | |- | ||
− | |Now, <math>h(x)=f | + | |Now, <math style="vertical-align: -6px">h(x)=f\circ g(x).</math> |
|- | |- | ||
|Using the Chain Rule, we have | |Using the Chain Rule, we have | ||
Line 42: | Line 42: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{h'(x)} & = & \displaystyle{f' | + | \displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\cos (3x)\cdot 3}\\ | & = & \displaystyle{\cos (3x)\cdot 3}\\ | ||
Line 61: | Line 61: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | |Let <math>f(x)=x^8</math> and <math>g(x)=x+1.</math> | + | |Let <math style="vertical-align: -5px">f(x)=x^8</math> and <math style="vertical-align: -5px">g(x)=x+1.</math> |
|- | |- | ||
− | |Then, <math>f'(x)=8x^7</math> and <math>g'(x)=1.</math> | + | |Then, <math style="vertical-align: -5px">f'(x)=8x^7</math> and <math style="vertical-align: -5px">g'(x)=1.</math> |
|- | |- | ||
− | |Now, <math>h(x)=f | + | |Now, <math style="vertical-align: -6px">h(x)=f\circ g(x).</math> |
|- | |- | ||
|Using the Chain Rule, we have | |Using the Chain Rule, we have | ||
Line 71: | Line 71: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{h'(x)} & = & \displaystyle{f' | + | \displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{8(x+1)^7\cdot 1}\\ | & = & \displaystyle{8(x+1)^7\cdot 1}\\ | ||
Line 90: | Line 90: | ||
!Solution: | !Solution: | ||
|- | |- | ||
− | |Let <math>f(x)=\ln (x)</math> and <math>g(x)=x^2.</math> | + | |Let <math style="vertical-align: -5px">f(x)=\ln (x)</math> and <math style="vertical-align: -5px">g(x)=x^2.</math> |
|- | |- | ||
− | |Then, <math>f'(x)=\frac{1}{x}</math> and <math>g'(x)=2x.</math> | + | |Then, <math style="vertical-align: -13px">f'(x)=\frac{1}{x}</math> and <math style="vertical-align: -5px">g'(x)=2x.</math> |
|- | |- | ||
− | |Now, <math>h(x)=f | + | |Now, <math style="vertical-align: -6px">h(x)=f\circ g(x).</math> |
|- | |- | ||
|Using the Chain Rule, we have | |Using the Chain Rule, we have | ||
Line 100: | Line 100: | ||
| | | | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{h'(x)} & = & \displaystyle{f' | + | \displaystyle{h'(x)} & = & \displaystyle{(f'\circ g(x))\cdot g'(x)}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\frac{1}{x^2}\cdot 2x}\\ | & = & \displaystyle{\frac{1}{x^2}\cdot 2x}\\ | ||
Line 117: | Line 117: | ||
== Exercise 1 == | == Exercise 1 == | ||
− | Calculate the derivative of <math style="vertical-align: - | + | Calculate the derivative of <math style="vertical-align: -6px">h(x)=(\sin x+\cos x)^4.</math> |
− | + | Using the Chain Rule, we have | |
− | |||
− | |||
− | |||
− | |||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{4(\sin x+\cos x)^3 (\sin x+\cos x)'}\\ |
− | |||
− | |||
− | |||
− | |||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ | + | & = & \displaystyle{4(\sin x+\cos x)^3 ((\sin x)'+(\cos x)')}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{4(\sin x+\cos x)^3 (\cos x-\sin x)}. |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>h'(x)=4(\sin x+\cos x)^3 (\cos x-\sin x).</math> |
== Exercise 2 == | == Exercise 2 == | ||
− | Calculate the derivative of <math style="vertical-align: - | + | Calculate the derivative of <math style="vertical-align: -6px">h(x)=\sin^3(2x^2+x+1).</math> |
− | + | First, notice <math style="vertical-align: -6px">h(x)=(\sin(2x^2+x+1))^3.</math> | |
− | + | Using the Chain Rule, we have | |
− | + | ::<math>h'(x)=3(\sin(2x^2+x+1))^2 \cdot (\sin(2x^2+x+1))'.</math> | |
− | + | Now, we need to use the Chain Rule a second time. So, we get | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | Now, we need to use the | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{3(\sin(2x^2+x+1))^2 \cos(2x^2+x+1)\cdot (2x^2+x+1)'}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{ | + | & = & \displaystyle{3\sin^2(2x^2+x+1) \cos(2x^2+x+1)(4x+1).} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>h'(x)=3\sin^2(2x^2+x+1) \cos(2x^2+x+1)(4x+1).</math> |
− | + | == Exercise 3 == | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | == | + | Calculate the derivative of <math style="vertical-align: -6px">h(x)=\cos (2x+1)\sin(x^2+3x).</math> |
− | + | Using the Product Rule, we have | |
− | + | ::<math>h'(x)=\cos(2x+1)(\sin(x^2+3x))'+(\cos(2x+1))'\sin(x^2+3x).</math> | |
− | + | For the two remaining derivatives, we need to use the Chain Rule. | |
− | + | So, using the Chain Rule, we have | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{h'(x)} & = & \displaystyle{\ | + | \displaystyle{h'(x)} & = & \displaystyle{\cos(2x+1)\cos(x^2+3x)\cdot (x^2+3x)'-\sin(2x+1)\cdot (2x+1)'\sin(x^2+3x)}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\ | + | & = & \displaystyle{\cos(2x+1)\cos(x^2+3x) (2x+3)-\sin(2x+1)(2)\sin(x^2+3x).} |
\end{array}</math> | \end{array}</math> | ||
So, we get | So, we get | ||
− | ::<math>h'(x)=\ | + | ::<math>h'(x)=\cos(2x+1)\cos(x^2+3x) (2x+3)-\sin(2x+1)(2)\sin(x^2+3x).</math> |
== Exercise 4 == | == Exercise 4 == | ||
− | Calculate the derivative of <math style="vertical-align: - | + | Calculate the derivative of <math style="vertical-align: -16px">h(x)=\frac{\sin(3x)+x\cos(2x)}{x^2+1}.</math> |
First, using the Quotient Rule, we have | First, using the Quotient Rule, we have | ||
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)(\sin(3x)+x\cos(2x))'-(\sin(3x)+x\cos(2x))(x^2+1)'}{(x^2+1)^2}}\\ |
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+(x\cos(2x))']-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.} | ||
+ | \end{array}</math> | ||
+ | |||
+ | Using the Product Rule, we get | ||
+ | |||
+ | ::<math>\begin{array}{rcl} | ||
+ | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+x(\cos(2x))'+(x)'\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{x^2\sin x | + | & = & \displaystyle{\frac{(x^2+1)[(\sin(3x))'+x(\cos(2x))'+1\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.} |
\end{array}</math> | \end{array}</math> | ||
− | + | For the remaining derivatives, we need to use the Chain Rule. So, we get | |
::<math>\begin{array}{rcl} | ::<math>\begin{array}{rcl} | ||
− | \displaystyle{ | + | \displaystyle{h'(x)} & = & \displaystyle{\frac{(x^2+1)[\cos(3x)(3x)'+x(-\sin(2x))(2x)'+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}}\\ |
&&\\ | &&\\ | ||
− | & = & \displaystyle{\frac{x^2\ | + | & = & \displaystyle{\frac{(x^2+1)[\cos(3x)(3)-x\sin(2x)(2)+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.} |
\end{array}</math> | \end{array}</math> | ||
So, we have | So, we have | ||
− | ::<math> | + | ::<math>h'(x)=\frac{(x^2+1)[\cos(3x)(3)-x\sin(2x)(2)+\cos(2x)]-(\sin(3x)+x\cos(2x))(2x)}{(x^2+1)^2}.</math> |
Latest revision as of 14:20, 15 October 2017
Introduction
It is relatively easy to calculate the derivatives of simple functions, like polynomials or trigonometric functions.
But, what about more complicated functions?
For example, or
Well, the key to calculating the derivatives of these functions is to recognize that these functions are compositions.
For it is the composition of the function with
Similarly, for it is the composition of and
So, how do we take the derivative of compositions?
The answer to this question is exactly the Chain Rule.
Chain Rule
Let be a differentiable function of and let be a differentiable function of
Then, is a differentiable function of and
Warm-Up
Calculate
1)
ExpandSolution: |
---|
ExpandFinal Answer: |
---|
2)
ExpandSolution: |
---|
ExpandFinal Answer: |
---|
3)
ExpandSolution: |
---|
ExpandFinal Answer: |
---|
Exercise 1
Calculate the derivative of
Using the Chain Rule, we have
So, we have
Exercise 2
Calculate the derivative of
First, notice
Using the Chain Rule, we have
Now, we need to use the Chain Rule a second time. So, we get
So, we have
Exercise 3
Calculate the derivative of
Using the Product Rule, we have
For the two remaining derivatives, we need to use the Chain Rule.
So, using the Chain Rule, we have
So, we get
Exercise 4
Calculate the derivative of
First, using the Quotient Rule, we have
Using the Product Rule, we get
For the remaining derivatives, we need to use the Chain Rule. So, we get
So, we have