Difference between revisions of "031 Review Part 3, Problem 11"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 6: | Line 6: | ||
<span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | <span class="exam">(b) Find the dimension of <math style="vertical-align: -1px">\text{Col }A.</math> | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 40: | Line 39: | ||
|- | |- | ||
| | | | ||
− | ::<math>A\vec{u}=\vec{0}</math> and <math>A\vec{v}=\vec{0}</math> | + | ::<math style="vertical-align: -1px">A\vec{u}=\vec{0}</math> and <math style="vertical-align: 0px">A\vec{v}=\vec{0}</math> |
|- | |- | ||
|since <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> are eigenvectors of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0. | |since <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> are eigenvectors of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 0. | ||
Line 56: | Line 55: | ||
& = & \displaystyle{A\vec{u}-2A\vec{v}}\\ | & = & \displaystyle{A\vec{u}-2A\vec{v}}\\ | ||
&&\\ | &&\\ | ||
− | & = & \displaystyle{\vec{0}-2\vec{0}}\\ | + | & = & \displaystyle{\vec{0}-2\cdot \vec{0}}\\ |
&&\\ | &&\\ | ||
& = & \displaystyle{\vec{0}.} | & = & \displaystyle{\vec{0}.} | ||
Line 98: | Line 97: | ||
| '''(a)''' See solution above. | | '''(a)''' See solution above. | ||
|- | |- | ||
− | | '''(b)''' <math style="vertical-align: -3px">\text{dim Col }A=3 | + | | '''(b)''' <math style="vertical-align: -3px">\text{dim Col }A=3</math> |
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:14, 15 October 2017
Suppose is a basis of the eigenspace corresponding to the eigenvalue 0 of a matrix
(a) Is an eigenvector of If so, find the corresponding eigenvalue.
If not, explain why.
(b) Find the dimension of
Foundations: |
---|
1. An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
2. By the Rank Theorem, if is a matrix, then |
|
Solution:
(a)
Step 1: |
---|
First, notice |
|
since is a basis of the eigenspace corresponding to the eigenvalue 0 of |
Also, we have |
|
since and are eigenvectors of corresponding to the eigenvalue 0. |
Step 2: |
---|
Now, we have |
|
Hence, is an eigenvector of corresponding to the eigenvalue |
(b)
Step 1: |
---|
Since is a basis for the eigenspace of corresponding to the eigenvalue 0, we know that |
|
Step 2: |
---|
Then, by the Rank Theorem, we have |
Hence, we have |
|
Final Answer: |
---|
(a) See solution above. |
(b) |