Difference between revisions of "031 Review Part 3, Problem 11"

From Grad Wiki
Jump to navigation Jump to search
 
Line 6: Line 6:
  
 
<span class="exam">(b) Find the dimension of &nbsp;<math style="vertical-align: -1px">\text{Col }A.</math>
 
<span class="exam">(b) Find the dimension of &nbsp;<math style="vertical-align: -1px">\text{Col }A.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 40: Line 39:
 
|-
 
|-
 
|
 
|
::<math>A\vec{u}=\vec{0}</math>&nbsp; and &nbsp;<math>A\vec{v}=\vec{0}</math>
+
::<math style="vertical-align: -1px">A\vec{u}=\vec{0}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A\vec{v}=\vec{0}</math>
 
|-
 
|-
 
|since &nbsp;<math style="vertical-align: 0px">\vec{u}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; are eigenvectors of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 0.
 
|since &nbsp;<math style="vertical-align: 0px">\vec{u}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; are eigenvectors of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 0.
Line 56: Line 55:
 
& = & \displaystyle{A\vec{u}-2A\vec{v}}\\
 
& = & \displaystyle{A\vec{u}-2A\vec{v}}\\
 
&&\\
 
&&\\
& = & \displaystyle{\vec{0}-2\vec{0}}\\
+
& = & \displaystyle{\vec{0}-2\cdot \vec{0}}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{\vec{0}.}
 
& = & \displaystyle{\vec{0}.}
Line 98: Line 97:
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">\text{dim Col }A=3.</math>
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -3px">\text{dim Col }A=3</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:14, 15 October 2017

Suppose    is a basis of the eigenspace corresponding to the eigenvalue 0 of a    matrix  

(a) Is    an eigenvector of    If so, find the corresponding eigenvalue.

If not, explain why.

(b) Find the dimension of  

Foundations:  
1. An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
First, notice
since    is a basis of the eigenspace corresponding to the eigenvalue 0 of  
Also, we have
  and  
since    and    are eigenvectors of    corresponding to the eigenvalue 0.
Step 2:  
Now, we have

       

Hence,    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is a basis for the eigenspace of    corresponding to the eigenvalue 0, we know that
Step 2:  
Then, by the Rank Theorem, we have
       
Hence, we have


Final Answer:  
   (a)     See solution above.
   (b)    

Return to Review Problems