Difference between revisions of "031 Review Part 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
Line 2: Line 2:
  
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 74: Line 73:
 
|
 
|
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
\displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y}}\\
+
\displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y})}\\
 
&&\\
 
&&\\
 
& = & \displaystyle{3(A^{-1}\vec{y}).}
 
& = & \displaystyle{3(A^{-1}\vec{y}).}
Line 105: Line 104:
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; See solution above.  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; See solution above.  
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:02, 15 October 2017

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?

Foundations:  
An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that


Solution:

(a)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Step 2:  
Now, we have
       
Hence, since    we conclude that    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Also, since    is invertible,    exists.
Step 2:  
Now, we multiply the equation from Step 1 on the left by    to obtain

       

Now, we have

       

Hence,  
Therefore,    is an eigenvector of    corresponding to the eigenvalue  


Final Answer:  
   (a)     See solution above.
   (b)     See solution above.

Return to Review Problems