Difference between revisions of "031 Review Part 3, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 2: | Line 2: | ||
<span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | <span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 20: | Line 19: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">2,</math> we know <math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
+ | ::<math>A\vec{x}=2\vec{x}.</math> | ||
|} | |} | ||
Line 27: | Line 29: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |Now, we have |
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{5\vec{x}}. | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, since <math style="vertical-align: -5px">\vec{x}\ne \vec{0},</math> we conclude that <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -2px">A^3-A^2+I</math> corresponding to the eigenvalue <math style="vertical-align: 0px">5.</math> | ||
+ | |||
|} | |} | ||
Line 34: | Line 57: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Since <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">3,</math> we know <math style="vertical-align: -5px">\vec{y}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
+ | ::<math>A\vec{y}=3\vec{y}.</math> | ||
+ | |- | ||
+ | |Also, since <math style="vertical-align: 0px">A</math> is invertible, <math style="vertical-align: 0px">A^{-1}</math> exists. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we multiply the equation from Step 1 on the left by <math style="vertical-align: 0px">A^{-1}</math> to obtain | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3(A^{-1}\vec{y}).} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Now, we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(A^{-1}A)\vec{y}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{I\vec{y}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\vec{y}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Hence, <math style="vertical-align: -13px">A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math> | ||
+ | |- | ||
+ | |Therefore, <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}</math> corresponding to the eigenvalue <math style="vertical-align: -12px">\frac{1}{3}.</math> | ||
|} | |} | ||
Line 48: | Line 100: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' See solution above. |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' See solution above. |
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 14:02, 15 October 2017
(a) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 2, then is an eigenvector of What is the corresponding eigenvalue?
(b) Show that if is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of What is the corresponding eigenvalue?
Foundations: |
---|
An eigenvector of a matrix corresponding to the eigenvalue is a nonzero vector such that |
|
Solution:
(a)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Step 2: |
---|
Now, we have |
Hence, since we conclude that is an eigenvector of corresponding to the eigenvalue |
(b)
Step 1: |
---|
Since is an eigenvector of corresponding to the eigenvalue we know and |
|
Also, since is invertible, exists. |
Step 2: |
---|
Now, we multiply the equation from Step 1 on the left by to obtain |
|
Now, we have |
|
Hence, |
Therefore, is an eigenvector of corresponding to the eigenvalue |
Final Answer: |
---|
(a) See solution above. |
(b) See solution above. |