Difference between revisions of "031 Review Part 3, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
(2 intermediate revisions by the same user not shown)
Line 2: Line 2:
  
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 
<span class="exam">(b) Show that if &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue 3 and &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, then &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}.</math>&nbsp; What is the corresponding eigenvalue?
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 20: Line 19:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -4px">2,</math>&nbsp; we know &nbsp;<math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math>&nbsp; and
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{x}=2\vec{x}.</math>
 
|}
 
|}
  
Line 27: Line 29:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, we have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\
 +
&&\\
 +
& = & \displaystyle{5\vec{x}}.
 +
\end{array}</math>
 +
|-
 +
|Hence, since &nbsp;<math style="vertical-align: -5px">\vec{x}\ne \vec{0},</math>&nbsp; we conclude that &nbsp;<math style="vertical-align: 0px">\vec{x}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: -2px">A^3-A^2+I</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: 0px">5.</math>
 +
 
 
|}
 
|}
  
Line 34: Line 57:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Since &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -4px">3,</math>&nbsp; we know &nbsp;<math style="vertical-align: -5px">\vec{y}\neq \vec{0}</math>&nbsp; and
 
|-
 
|-
 
|
 
|
 +
::<math>A\vec{y}=3\vec{y}.</math>
 +
|-
 +
|Also, since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible, &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; exists.
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we multiply the equation from Step 1 on the left by &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; to obtain
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y})}\\
 +
&&\\
 +
& = & \displaystyle{3(A^{-1}\vec{y}).}
 +
\end{array}</math>
 +
|-
 +
|Now, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\
 +
&&\\
 +
& = & \displaystyle{(A^{-1}A)\vec{y}}\\
 +
&&\\
 +
& = & \displaystyle{I\vec{y}}\\
 +
&&\\
 +
& = & \displaystyle{\vec{y}.}
 +
\end{array}</math>
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: -13px">A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math>
 +
|-
 +
|Therefore, &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; is an eigenvector of &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; corresponding to the eigenvalue &nbsp;<math style="vertical-align: -12px">\frac{1}{3}.</math>
 
|}
 
|}
  
Line 48: Line 100:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; See solution above.
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; See solution above.
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 14:02, 15 October 2017

(a) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 2, then    is an eigenvector of    What is the corresponding eigenvalue?

(b) Show that if    is an eigenvector of the matrix    corresponding to the eigenvalue 3 and    is invertible, then    is an eigenvector of    What is the corresponding eigenvalue?

Foundations:  
An eigenvector    of a matrix    corresponding to the eigenvalue    is a nonzero vector such that


Solution:

(a)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Step 2:  
Now, we have
       
Hence, since    we conclude that    is an eigenvector of    corresponding to the eigenvalue  

(b)

Step 1:  
Since    is an eigenvector of    corresponding to the eigenvalue    we know    and
Also, since    is invertible,    exists.
Step 2:  
Now, we multiply the equation from Step 1 on the left by    to obtain

       

Now, we have

       

Hence,  
Therefore,    is an eigenvector of    corresponding to the eigenvalue  


Final Answer:  
   (a)     See solution above.
   (b)     See solution above.

Return to Review Problems