Difference between revisions of "031 Review Part 3, Problem 6"
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 2: | Line 2: | ||
<span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | <span class="exam">(b) Show that if <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of the matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue 3 and <math style="vertical-align: 0px">A</math> is invertible, then <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}.</math> What is the corresponding eigenvalue? | ||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |An eigenvector <math style="vertical-align: 0px">\vec{x}</math> of a matrix <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: 0px">\lambda</math> is a nonzero vector such that | ||
|- | |- | ||
| | | | ||
| + | ::<math>A\vec{x}=\lambda\vec{x}.</math> | ||
|} | |} | ||
| Line 17: | Line 19: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">2,</math> we know <math style="vertical-align: -5px">\vec{x}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
| + | ::<math>A\vec{x}=2\vec{x}.</math> | ||
|} | |} | ||
| Line 24: | Line 29: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |Now, we have |
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{5\vec{x}}. | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, since <math style="vertical-align: -5px">\vec{x}\ne \vec{0},</math> we conclude that <math style="vertical-align: 0px">\vec{x}</math> is an eigenvector of <math style="vertical-align: -2px">A^3-A^2+I</math> corresponding to the eigenvalue <math style="vertical-align: 0px">5.</math> | ||
| + | |||
|} | |} | ||
| Line 31: | Line 57: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A</math> corresponding to the eigenvalue <math style="vertical-align: -4px">3,</math> we know <math style="vertical-align: -5px">\vec{y}\neq \vec{0}</math> and | ||
|- | |- | ||
| | | | ||
| + | ::<math>A\vec{y}=3\vec{y}.</math> | ||
| + | |- | ||
| + | |Also, since <math style="vertical-align: 0px">A</math> is invertible, <math style="vertical-align: 0px">A^{-1}</math> exists. | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we multiply the equation from Step 1 on the left by <math style="vertical-align: 0px">A^{-1}</math> to obtain | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{3(A^{-1}\vec{y}).} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Now, we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{(A^{-1}A)\vec{y}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{I\vec{y}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\vec{y}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Hence, <math style="vertical-align: -13px">A^{-1}\vec{y}=\frac{1}{3}\vec{y}.</math> | ||
| + | |- | ||
| + | |Therefore, <math style="vertical-align: -3px">\vec{y}</math> is an eigenvector of <math style="vertical-align: 0px">A^{-1}</math> corresponding to the eigenvalue <math style="vertical-align: -12px">\frac{1}{3}.</math> | ||
|} | |} | ||
| Line 45: | Line 100: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' See solution above. |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' See solution above. |
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:02, 15 October 2017
(a) Show that if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} is an eigenvector of the matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} corresponding to the eigenvalue 2, then Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^3-A^2+I.} What is the corresponding eigenvalue?
(b) Show that if Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}} is an eigenvector of the matrix corresponding to the eigenvalue 3 and is invertible, then is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}.} What is the corresponding eigenvalue?
| Foundations: |
|---|
| An eigenvector Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} of a matrix Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \lambda} is a nonzero vector such that |
|
Solution:
(a)
| Step 1: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2,} we know Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}\neq \vec{0}} and |
|
| Step 2: |
|---|
| Now, we have |
| Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{(A^3-A^2+I)\vec{x}} & = & \displaystyle{A^3\vec{x}-A^2\vec{x}+I\vec{x}}\\ &&\\ & = & \displaystyle{A\cdot A\cdot A\vec{x}-A\cdot A\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{A\cdot A \cdot 2\vec{x}-A\cdot 2\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{2A\cdot A\vec{x}-2A\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{2A\cdot 2\vec{x}-2\cdot 2\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{(2\cdot 2)A\vec{x}-4\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{(4)\cdot 2\vec{x}-4\vec{x}+\vec{x}}\\ &&\\ & = & \displaystyle{5\vec{x}}. \end{array}} |
| Hence, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}\ne \vec{0},} we conclude that Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{x}} is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^3-A^2+I} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 5.} |
(b)
| Step 1: |
|---|
| Since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}} is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3,} we know Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}\neq \vec{0}} and |
|
| Also, since Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A} is invertible, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}} exists. |
| Step 2: |
|---|
| Now, we multiply the equation from Step 1 on the left by Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}} to obtain |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{A^{-1}(A\vec{y})} & = & \displaystyle{A^{-1}(3\vec{y})}\\ &&\\ & = & \displaystyle{3(A^{-1}\vec{y}).} \end{array}} |
| Now, we have |
|
Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{array}{rcl} \displaystyle{3(A^{-1}\vec{y})} & = & \displaystyle{A^{-1}(A\vec{y})}\\ &&\\ & = & \displaystyle{(A^{-1}A)\vec{y}}\\ &&\\ & = & \displaystyle{I\vec{y}}\\ &&\\ & = & \displaystyle{\vec{y}.} \end{array}} |
| Hence, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}\vec{y}=\frac{1}{3}\vec{y}.} |
| Therefore, Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \vec{y}} is an eigenvector of Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A^{-1}} corresponding to the eigenvalue Failed to parse (MathML with SVG or PNG fallback (recommended for modern browsers and accessibility tools): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{1}{3}.} |
| Final Answer: |
|---|
| (a) See solution above. |
| (b) See solution above. |