Difference between revisions of "031 Review Part 3, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
 
Line 3: Line 3:
 
           2 & -6  
 
           2 & -6  
 
         \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
 
         \end{bmatrix}^k</math>&nbsp; by diagonalizing the matrix.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 63: Line 62:
 
::<math>(\lambda+2)(\lambda+3)=0,</math>&nbsp;  
 
::<math>(\lambda+2)(\lambda+3)=0,</math>&nbsp;  
 
|-
 
|-
|we find that the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">-2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">3.</math>
+
|we find that the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">-2</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">-3.</math>
 
|}
 
|}
  
Line 215: Line 214:
 
|&nbsp;&nbsp; &nbsp; &nbsp;   
 
|&nbsp;&nbsp; &nbsp; &nbsp;   
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:59, 15 October 2017

Find a formula for    by diagonalizing the matrix.

Foundations:  
Recall:
1. To diagonalize a matrix, you need to know the eigenvalues of the matrix.
2. Diagonalization Theorem
An    matrix    is diagonalizable if and only if    has    linearly independent eigenvectors.
In fact,    with    a diagonal matrix, if and only if the columns of    are    linearly
independent eigenvectors of    In this case, the diagonal entries of    are eigenvalues of    that
correspond, respectively , to the eigenvectors in  


Solution:

Step 1:  
To diagonalize this matrix, we need to find the eigenvalues and a basis for each eigenspace.
First, we find the eigenvalues of    by solving  
       
Therefore, setting
 
we find that the eigenvalues of    are    and  
Step 2:  
Now, we find a basis for each eigenspace by solving    for each eigenvalue  
For the eigenvalue    we have

       

We see that    is a free variable. So, a basis for the eigenspace corresponding to    is
Step 3:  
For the eigenvalue    we have

       

We see that    is a free variable. So, a basis for the eigenspace corresponding to    is
Step 4:  
To diagonalize our matrix, we use the information from the steps above.

Using the Diagonalization Theorem, we have    where

Step 5:  
Notice that

       


Final Answer:  
              

Return to Review Problems