Difference between revisions of "031 Review Part 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 15: Line 15:
 
           0
 
           0
 
         \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
 
         \end{bmatrix}</math>&nbsp; in &nbsp;<math style="vertical-align: 0px">W^\perp?</math>&nbsp; Explain.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|Recall that if &nbsp;<math>W</math>&nbsp; is a subspace of &nbsp;<math>\mathbb{R}^n,</math>&nbsp; then
+
|Recall that if &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; is a subspace of &nbsp;<math style="vertical-align: -4px">\mathbb{R}^n,</math>&nbsp; then
 
|-
 
|-
 
|
 
|
Line 42: Line 41:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
|-
 
|-
|is in  &nbsp;<math>W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to  
+
|is in  &nbsp;<math style="vertical-align: -4px">W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to  
 
|-
 
|-
|the basis elements of &nbsp;<math>W.</math>
+
|the basis elements of &nbsp;<math style="vertical-align: 0px">W.</math>
 
|-
 
|-
 
|Notice that we have
 
|Notice that we have
Line 68: Line 67:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Additionally, we have
 
|-
 
|-
 
|
 
|
Line 108: Line 109:
 
         \end{bmatrix}\in W^\perp</math>
 
         \end{bmatrix}\in W^\perp</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:56, 15 October 2017

Let    Is    in    Explain.

Foundations:  
Recall that if    is a subspace of    then


Solution:

Step 1:  
To determine whether the vector
is in    it suffices to see if this vector is orthogonal to
the basis elements of  
Notice that we have

       

Step 2:  
Additionally, we have

       

Hence, we conclude


Final Answer:  
       

Return to Review Problems