Difference between revisions of "031 Review Part 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(5 intermediate revisions by the same user not shown) | |||
Line 8: | Line 8: | ||
<span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. | <span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |Recall: | ||
+ | |- | ||
+ | |'''1.''' The eigenvalues of a triangular matrix are the entries on the diagonal. | ||
+ | |- | ||
+ | |'''2.''' By the Diagonalization Theorem, an <math style="vertical-align: 0px">n\times n</math> matrix <math style="vertical-align: 0px">A</math> is diagonalizable | ||
|- | |- | ||
| | | | ||
+ | :if and only if <math style="vertical-align: 0px">A</math> has <math style="vertical-align: 0px">n</math> linearly independent eigenvectors. | ||
|} | |} | ||
Line 24: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues are the entries on the diagonal. |
+ | |- | ||
+ | |Hence, the only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, to find a basis for the eigenspace corresponding to <math style="vertical-align: -4px">5,</math> we need to solve <math style="vertical-align: -5px">(A-5I)\vec{x}=\vec{0}.</math> | ||
+ | |- | ||
+ | |We have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A-5I} & = & \displaystyle{\begin{bmatrix} | ||
+ | 5 & 1 \\ | ||
+ | 0 & 5 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | 5 & 0 \\ | ||
+ | 0 & 5 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0 & 1 \\ | ||
+ | 0 & 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Solving this system, we see <math style="vertical-align: -4px">x_1</math> is a free variable and <math style="vertical-align: -4px">x_2=0.</math> | ||
+ | |- | ||
+ | |Therefore, a basis for this eigenspace is | ||
|- | |- | ||
| | | | ||
+ | ::<math>\bigg\{\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\bigg\}.</math> | ||
|} | |} | ||
Line 38: | Line 73: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |From part (a), we know that <math style="vertical-align: 0px">A</math> only has one linearly independent eigenvector. |
|} | |} | ||
Line 44: | Line 79: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | | | + | |By the Diagonalization Theorem, <math style="vertical-align: 0px">A</math> must have <math style="vertical-align: 0px">2</math> linearly independent eigenvectors to be diagonalizable. |
+ | |- | ||
+ | |Hence, <math style="vertical-align: 0px">A</math> is not diagonalizable. | ||
|} | |} | ||
Line 51: | Line 88: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' The only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5</math> and the corresponding eigenspace has basis <math style="vertical-align: -20px">\bigg\{\begin{bmatrix} |
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\bigg\}.</math> | ||
+ | |||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">A</math> is not diagonalizable. |
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:54, 15 October 2017
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
Foundations: |
---|
Recall: |
1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
Step 1: |
---|
Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
Hence, the only eigenvalue of is |
Step 2: |
---|
Now, to find a basis for the eigenspace corresponding to we need to solve |
We have |
Solving this system, we see is a free variable and |
Therefore, a basis for this eigenspace is |
|
(b)
Step 1: |
---|
From part (a), we know that only has one linearly independent eigenvector. |
Step 2: |
---|
By the Diagonalization Theorem, must have linearly independent eigenvectors to be diagonalizable. |
Hence, is not diagonalizable. |
Final Answer: |
---|
(a) The only eigenvalue of is and the corresponding eigenspace has basis |
(b) is not diagonalizable. |