Difference between revisions of "031 Review Part 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (6 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">Let <math style="vertical-align: -20px">A= |
\begin{bmatrix} | \begin{bmatrix} | ||
| − | 1 | + | 5 & 1 \\ |
| − | + | 0 & 5 | |
| − | + | \end{bmatrix}.</math> | |
| − | \end{bmatrix}</math> | ||
| − | + | <span class="exam">(a) Find a basis for the eigenspace(s) of <math style="vertical-align: 0px">A.</math> | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | <span class="exam">(a) | ||
| − | |||
| − | |||
| + | <span class="exam">(b) Is the matrix <math style="vertical-align: 0px">A</math> diagonalizable? Explain. | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |Recall: | ||
| + | |- | ||
| + | |'''1.''' The eigenvalues of a triangular matrix are the entries on the diagonal. | ||
| + | |- | ||
| + | |'''2.''' By the Diagonalization Theorem, an <math style="vertical-align: 0px">n\times n</math> matrix <math style="vertical-align: 0px">A</math> is diagonalizable | ||
|- | |- | ||
| | | | ||
| + | :if and only if <math style="vertical-align: 0px">A</math> has <math style="vertical-align: 0px">n</math> linearly independent eigenvectors. | ||
|} | |} | ||
| Line 32: | Line 30: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| + | |- | ||
| + | |Hence, the only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, to find a basis for the eigenspace corresponding to <math style="vertical-align: -4px">5,</math> we need to solve <math style="vertical-align: -5px">(A-5I)\vec{x}=\vec{0}.</math> | ||
| + | |- | ||
| + | |We have | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-5I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 5 & 1 \\ | ||
| + | 0 & 5 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 5 & 0 \\ | ||
| + | 0 & 5 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & = & \displaystyle{\begin{bmatrix} | ||
| + | 0 & 1 \\ | ||
| + | 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Solving this system, we see <math style="vertical-align: -4px">x_1</math> is a free variable and <math style="vertical-align: -4px">x_2=0.</math> | ||
| + | |- | ||
| + | |Therefore, a basis for this eigenspace is | ||
|- | |- | ||
| | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
|} | |} | ||
| Line 46: | Line 73: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |From part (a), we know that <math style="vertical-align: 0px">A</math> only has one linearly independent eigenvector. |
|} | |} | ||
| Line 52: | Line 79: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
| − | | | + | |By the Diagonalization Theorem, <math style="vertical-align: 0px">A</math> must have <math style="vertical-align: 0px">2</math> linearly independent eigenvectors to be diagonalizable. |
| + | |- | ||
| + | |Hence, <math style="vertical-align: 0px">A</math> is not diagonalizable. | ||
|} | |} | ||
| Line 59: | Line 88: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' The only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5</math> and the corresponding eigenspace has basis <math style="vertical-align: -20px">\bigg\{\begin{bmatrix} |
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |||
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">A</math> is not diagonalizable. |
|} | |} | ||
| − | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:54, 15 October 2017
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of is |
| Step 2: |
|---|
| Now, to find a basis for the eigenspace corresponding to we need to solve |
| We have |
| Solving this system, we see is a free variable and |
| Therefore, a basis for this eigenspace is |
|
|
(b)
| Step 1: |
|---|
| From part (a), we know that only has one linearly independent eigenvector. |
| Step 2: |
|---|
| By the Diagonalization Theorem, must have linearly independent eigenvectors to be diagonalizable. |
| Hence, is not diagonalizable. |
| Final Answer: |
|---|
| (a) The only eigenvalue of is and the corresponding eigenspace has basis |
| (b) is not diagonalizable. |