Difference between revisions of "031 Review Part 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
 
(4 intermediate revisions by the same user not shown)
Line 11: Line 11:
 
           0 & 0 & 3  
 
           0 & 0 & 3  
 
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
 
         \end{bmatrix}</math>&nbsp; diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 34: Line 33:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|To answer this question, we examine the eigenvalues and eigenvectors of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a triangular matrix, the eigenvalues are the entries on the diagonal.
 +
|-
 +
|Hence, the only eigenvalue of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">3.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we find a basis for the eigenspace corresponding to &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; by solving &nbsp;<math style="vertical-align: -5px">(A-3I)\vec{x}=\vec{0}.</math>
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix}
 +
          3 & 1 \\
 +
          0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          3 & 0 \\
 +
          0 & 3
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          0 & 1 \\
 +
          0 & 0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 +
|-
 +
|Solving this system, we see &nbsp;<math style="vertical-align: -4px">x_1</math>&nbsp; is a free variable and &nbsp;<math style="vertical-align: -4px">x_2=0.</math>
 +
|-
 +
|Therefore, a basis for this eigenspace is
 
|-
 
|-
 
|
 
|
 +
::<math>\bigg\{\begin{bmatrix}
 +
          1  \\
 +
          0 
 +
        \end{bmatrix}\bigg\}.</math>
 +
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; only has one linearly independent eigenvector.
 +
|-
 +
|By the Diagonalization Theorem, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must have &nbsp;<math style="vertical-align: 0px">2</math>&nbsp; linearly independent eigenvectors to be diagonalizable.
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable.
 +
 
|}
 
|}
  
Line 47: Line 89:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|First, we find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; by solving &nbsp;<math style="vertical-align: -5px">\text{det }(A-\lambda I)=0.</math>
 +
|-
 +
|Using cofactor expansion, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix}
 +
          2 & 0 & -2 \\
 +
          1 & 3  & 2 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          \lambda & 0 & 0 \\
 +
          0 & \lambda  & 0 \\
 +
          0 & 0 & \lambda
 +
        \end{bmatrix}\Bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\text{det }\Bigg(\begin{bmatrix}
 +
          2-\lambda & 0 & -2 \\
 +
          1 & 3-\lambda  & 2 \\
 +
          0 & 0 & 3-\lambda
 +
        \end{bmatrix}\Bigg)}\\
 +
&&\\
 +
& = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix}
 +
          2-\lambda & -2 \\
 +
          0 & 3-\lambda 
 +
        \end{bmatrix}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).}
 +
\end{array}</math>
 +
|-
 +
|Therefore, setting
 +
|-
 +
|
 +
::<math>(3-\lambda)(2-\lambda)(3-\lambda)=0,</math>&nbsp;
 +
|-
 +
|we find that the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">2.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we find a basis for each eigenspace by solving &nbsp;<math style="vertical-align: -6px">(A-\lambda I)\vec{x}=\vec{0}</math>&nbsp; for each eigenvalue &nbsp;<math style="vertical-align: 0px">\lambda.</math>
 +
|-
 +
|For the eigenvalue &nbsp;<math style="vertical-align: -4px">\lambda=2,</math>&nbsp; we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix}
 +
          2 & 0 & -2 \\
 +
          1 & 3  & 2 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          2 & 0 & 0 \\
 +
          0 & 2  & 0 \\
 +
          0 & 0 & 2
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          0 & 0 & -2 \\
 +
          1 & 1  & 2 \\
 +
          0 & 0 & 1
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& \sim & \displaystyle{\begin{bmatrix}
 +
          1 & 1 & 0 \\
 +
          0 & 0  & 1 \\
 +
          0 & 0 & 0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 +
|-
 +
|We see that &nbsp;<math style="vertical-align: -3px">x_2</math>&nbsp; is a free variable. So, a basis for the eigenspace corresponding to &nbsp;<math style="vertical-align: -1px">2</math>&nbsp; is 
 
|-
 
|-
 
|
 
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          -1  \\
 +
          1 \\
 +
          0 
 +
        \end{bmatrix}\Bigg\}.</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|For the eigenvalue &nbsp;<math style="vertical-align: -4px">\lambda=3,</math>&nbsp; we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix}
 +
          2 & 0 & -2 \\
 +
          1 & 3  & 2 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          3 & 0 & 0 \\
 +
          0 & 3  & 0 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          -1 & 0 & -2 \\
 +
          1 & 0  & 2 \\
 +
          0 & 0 & 0
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& \sim & \displaystyle{\begin{bmatrix}
 +
          1 & 0 & 2 \\
 +
          0 & 0  & 0 \\
 +
          0 & 0 & 0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 +
|-
 +
|We see that &nbsp;<math style="vertical-align: -3px">x_2</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">x_3</math>&nbsp; are free variables. So, a basis for the eigenspace corresponding to &nbsp;<math style="vertical-align: -1px">3</math>&nbsp; is 
 +
|-
 +
|
 +
::<math>\Bigg\{\begin{bmatrix}
 +
          0  \\
 +
          1 \\
 +
          0 
 +
        \end{bmatrix},\begin{bmatrix}
 +
          -2  \\
 +
          0 \\
 +
          1 
 +
        \end{bmatrix}\Bigg\}.</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 4: &nbsp;
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; linearly independent eigenvectors, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable by the Diagonalization Theorem.
 +
|-
 +
|Using the Diagonalization Theorem, we can diagonalize &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; using the information from the steps above.
 +
|-
 +
|So, we have
 +
|-
 +
|
 +
::<math>D=\begin{bmatrix}
 +
          2 & 0 & 0 \\
 +
          0 & 3  & 0 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix},P=\begin{bmatrix}
 +
          -1 & 0 & -2 \\
 +
          1 & 1  & 0 \\
 +
          0 & 0 & 1
 +
        \end{bmatrix}.</math>
 
|}
 
|}
  
Line 61: Line 239:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable.
 +
 
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable and &nbsp;<math>D=\begin{bmatrix}
 +
          2 & 0 & 0 \\
 +
          0 & 3  & 0 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix},P=\begin{bmatrix}
 +
          -1 & 0 & -2 \\
 +
          1 & 1  & 0 \\
 +
          0 & 0 & 1
 +
        \end{bmatrix}.</math>
 
|}
 
|}
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_3|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:51, 15 October 2017

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have    linearly independent eigenvectors to be diagonalizable.
Hence,    is not diagonalizable.

(b)

Step 1:  
First, we find the eigenvalues of    by solving  
Using cofactor expansion, we have

       

Therefore, setting
 
we find that the eigenvalues of    are    and  
Step 2:  
Now, we find a basis for each eigenspace by solving    for each eigenvalue  
For the eigenvalue    we have

       

We see that    is a free variable. So, a basis for the eigenspace corresponding to    is
Step 3:  
For the eigenvalue    we have

       

We see that    and    are free variables. So, a basis for the eigenspace corresponding to    is
Step 4:  
Since    has    linearly independent eigenvectors,    is diagonalizable by the Diagonalization Theorem.
Using the Diagonalization Theorem, we can diagonalize    using the information from the steps above.
So, we have


Final Answer:  
   (a)       is not diagonalizable.
   (b)       is diagonalizable and  

Return to Review Problems