Difference between revisions of "031 Review Part 3, Problem 1"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 11: | Line 11: | ||
0 & 0 & 3 | 0 & 0 & 3 | ||
\end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not. | \end{bmatrix}</math> diagonalizable? If so, explain why and diagonalize it. If not, explain why not. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 34: | Line 33: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |To answer this question, we examine the eigenvalues and eigenvectors of <math style="vertical-align: 0px">A.</math> |
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues are the entries on the diagonal. | ||
+ | |- | ||
+ | |Hence, the only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">3.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we find a basis for the eigenspace corresponding to <math style="vertical-align: 0px">3</math> by solving <math style="vertical-align: -5px">(A-3I)\vec{x}=\vec{0}.</math> | ||
+ | |- | ||
+ | |We have | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} | ||
+ | 3 & 1 \\ | ||
+ | 0 & 3 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | 3 & 0 \\ | ||
+ | 0 & 3 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0 & 1 \\ | ||
+ | 0 & 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Solving this system, we see <math style="vertical-align: -4px">x_1</math> is a free variable and <math style="vertical-align: -4px">x_2=0.</math> | ||
+ | |- | ||
+ | |Therefore, a basis for this eigenspace is | ||
|- | |- | ||
| | | | ||
+ | ::<math>\bigg\{\begin{bmatrix} | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\bigg\}.</math> | ||
+ | |||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |Now, we know that <math style="vertical-align: 0px">A</math> only has one linearly independent eigenvector. | ||
+ | |- | ||
+ | |By the Diagonalization Theorem, <math style="vertical-align: 0px">A</math> must have <math style="vertical-align: 0px">2</math> linearly independent eigenvectors to be diagonalizable. | ||
+ | |- | ||
+ | |Hence, <math style="vertical-align: 0px">A</math> is not diagonalizable. | ||
+ | |||
|} | |} | ||
Line 47: | Line 89: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |First, we find the eigenvalues of <math style="vertical-align: 0px">A</math> by solving <math style="vertical-align: -5px">\text{det }(A-\lambda I)=0.</math> | ||
+ | |- | ||
+ | |Using cofactor expansion, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} | ||
+ | 2 & 0 & -2 \\ | ||
+ | 1 & 3 & 2 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | \lambda & 0 & 0 \\ | ||
+ | 0 & \lambda & 0 \\ | ||
+ | 0 & 0 & \lambda | ||
+ | \end{bmatrix}\Bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix} | ||
+ | 2-\lambda & 0 & -2 \\ | ||
+ | 1 & 3-\lambda & 2 \\ | ||
+ | 0 & 0 & 3-\lambda | ||
+ | \end{bmatrix}\Bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix} | ||
+ | 2-\lambda & -2 \\ | ||
+ | 0 & 3-\lambda | ||
+ | \end{bmatrix}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Therefore, setting | ||
+ | |- | ||
+ | | | ||
+ | ::<math>(3-\lambda)(2-\lambda)(3-\lambda)=0,</math> | ||
+ | |- | ||
+ | |we find that the eigenvalues of <math style="vertical-align: 0px">A</math> are <math style="vertical-align: 0px">3</math> and <math style="vertical-align: 0px">2.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we find a basis for each eigenspace by solving <math style="vertical-align: -6px">(A-\lambda I)\vec{x}=\vec{0}</math> for each eigenvalue <math style="vertical-align: 0px">\lambda.</math> | ||
+ | |- | ||
+ | |For the eigenvalue <math style="vertical-align: -4px">\lambda=2,</math> we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A-2I} & = & \displaystyle{\begin{bmatrix} | ||
+ | 2 & 0 & -2 \\ | ||
+ | 1 & 3 & 2 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | 2 & 0 & 0 \\ | ||
+ | 0 & 2 & 0 \\ | ||
+ | 0 & 0 & 2 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0 & 0 & -2 \\ | ||
+ | 1 & 1 & 2 \\ | ||
+ | 0 & 0 & 1 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\begin{bmatrix} | ||
+ | 1 & 1 & 0 \\ | ||
+ | 0 & 0 & 1 \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |We see that <math style="vertical-align: -3px">x_2</math> is a free variable. So, a basis for the eigenspace corresponding to <math style="vertical-align: -1px">2</math> is | ||
|- | |- | ||
| | | | ||
+ | ::<math>\Bigg\{\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}\Bigg\}.</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |For the eigenvalue <math style="vertical-align: -4px">\lambda=3,</math> we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix} | ||
+ | 2 & 0 & -2 \\ | ||
+ | 1 & 3 & 2 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | 3 & 0 & 0 \\ | ||
+ | 0 & 3 & 0 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | -1 & 0 & -2 \\ | ||
+ | 1 & 0 & 2 \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\begin{bmatrix} | ||
+ | 1 & 0 & 2 \\ | ||
+ | 0 & 0 & 0 \\ | ||
+ | 0 & 0 & 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |We see that <math style="vertical-align: -3px">x_2</math> and <math style="vertical-align: -3px">x_3</math> are free variables. So, a basis for the eigenspace corresponding to <math style="vertical-align: -1px">3</math> is | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\Bigg\{\begin{bmatrix} | ||
+ | 0 \\ | ||
+ | 1 \\ | ||
+ | 0 | ||
+ | \end{bmatrix},\begin{bmatrix} | ||
+ | -2 \\ | ||
+ | 0 \\ | ||
+ | 1 | ||
+ | \end{bmatrix}\Bigg\}.</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 4: | ||
+ | |- | ||
+ | |Since <math style="vertical-align: 0px">A</math> has <math style="vertical-align: 0px">3</math> linearly independent eigenvectors, <math style="vertical-align: 0px">A</math> is diagonalizable by the Diagonalization Theorem. | ||
+ | |- | ||
+ | |Using the Diagonalization Theorem, we can diagonalize <math style="vertical-align: 0px">A</math> using the information from the steps above. | ||
+ | |- | ||
+ | |So, we have | ||
+ | |- | ||
+ | | | ||
+ | ::<math>D=\begin{bmatrix} | ||
+ | 2 & 0 & 0 \\ | ||
+ | 0 & 3 & 0 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix},P=\begin{bmatrix} | ||
+ | -1 & 0 & -2 \\ | ||
+ | 1 & 1 & 0 \\ | ||
+ | 0 & 0 & 1 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
Line 61: | Line 239: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math style="vertical-align: 0px">A</math> is not diagonalizable. |
+ | |||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: 0px">A</math> is diagonalizable and <math>D=\begin{bmatrix} |
+ | 2 & 0 & 0 \\ | ||
+ | 0 & 3 & 0 \\ | ||
+ | 0 & 0 & 3 | ||
+ | \end{bmatrix},P=\begin{bmatrix} | ||
+ | -1 & 0 & -2 \\ | ||
+ | 1 & 1 & 0 \\ | ||
+ | 0 & 0 & 1 | ||
+ | \end{bmatrix}.</math> | ||
|} | |} | ||
− | [[031_Review_Part_3|'''<u>Return to | + | [[031_Review_Part_3|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:51, 15 October 2017
(a) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
(b) Is the matrix diagonalizable? If so, explain why and diagonalize it. If not, explain why not.
Foundations: |
---|
Recall: |
1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
Step 1: |
---|
To answer this question, we examine the eigenvalues and eigenvectors of |
Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
Hence, the only eigenvalue of is |
Step 2: |
---|
Now, we find a basis for the eigenspace corresponding to by solving |
We have |
Solving this system, we see is a free variable and |
Therefore, a basis for this eigenspace is |
|
Step 3: |
---|
Now, we know that only has one linearly independent eigenvector. |
By the Diagonalization Theorem, must have linearly independent eigenvectors to be diagonalizable. |
Hence, is not diagonalizable. |
(b)
Step 1: |
---|
First, we find the eigenvalues of by solving |
Using cofactor expansion, we have |
|
Therefore, setting |
|
we find that the eigenvalues of are and |
Step 2: |
---|
Now, we find a basis for each eigenspace by solving for each eigenvalue |
For the eigenvalue we have |
|
We see that is a free variable. So, a basis for the eigenspace corresponding to is |
|
Step 3: |
---|
For the eigenvalue we have |
|
We see that and are free variables. So, a basis for the eigenspace corresponding to is |
|
Step 4: |
---|
Since has linearly independent eigenvectors, is diagonalizable by the Diagonalization Theorem. |
Using the Diagonalization Theorem, we can diagonalize using the information from the steps above. |
So, we have |
|
Final Answer: |
---|
(a) is not diagonalizable. |
(b) is diagonalizable and |