Difference between revisions of "031 Review Part 2, Problem 10"

From Grad Wiki
Jump to navigation Jump to search
 
Line 2: Line 2:
  
 
<span class="exam">(b) If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math style="vertical-align: -1px">\text{Nul }A?</math>
 
<span class="exam">(b) If &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">7\times 5</math>&nbsp; matrix, what is the smallest possible dimension of &nbsp;<math style="vertical-align: -1px">\text{Nul }A?</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 86: Line 85:
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -1px">0</math>
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math style="vertical-align: -1px">0</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:42, 15 October 2017

(a) Suppose a    matrix    has 4 pivot columns. What is    Is    Why or why not?

(b) If    is a    matrix, what is the smallest possible dimension of  

Foundations:  
1. The dimension of    is equal to the number of pivots in  
2. By the Rank Theorem, if    is a    matrix, then


Solution:

(a)

Step 1:  
Since    has 4 pivot columns,
Step 2:  
Since    is a    matrix,    contains vectors in  
Since a vector in    is not a vector in    we have

(b)

Step 1:  
By the Rank Theorem, we have
Thus,
Step 2:  
If we want to minimize    we need to maximize  
To do this, we need to find out the maximum number of pivots in  
Since    is a    matrix, the maximum number of pivots in    is 5.
Hence, the smallest possible value for    is

       


Final Answer:  
   (a)       and  
   (b)    

Return to Review Problems