Difference between revisions of "031 Review Part 2, Problem 10"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (5 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | <span class="exam"> | + | <span class="exam">(a) Suppose a <math style="vertical-align: 0px">6\times 8</math> matrix <math style="vertical-align: 0px">A</math> has 4 pivot columns. What is <math style="vertical-align: -1px">\text{dim Nul }A?</math> Is <math style="vertical-align: -1px">\text{Col }A=\mathbb{R}^4?</math> Why or why not? |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| + | <span class="exam">(b) If <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">7\times 5</math> matrix, what is the smallest possible dimension of <math style="vertical-align: -1px">\text{Nul }A?</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
| + | |- | ||
| + | |'''1.''' The dimension of <math style="vertical-align: -2px">\text{Col }A</math> is equal to the number of pivots in <math style="vertical-align: 0px">A.</math> | ||
| + | |- | ||
| + | |'''2.''' By the Rank Theorem, if <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix, then | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{dim Nul }A+\text{dim Col }A=n.</math> | ||
| + | |||
|} | |} | ||
| Line 31: | Line 22: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">A</math> has 4 pivot columns, | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{dim Col }A=4.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">6\times 8</math> matrix, <math style="vertical-align: 0px">\text{Col }A</math> contains vectors in <math style="vertical-align: 0px">\mathbb{R}^6.</math> | ||
| + | |- | ||
| + | |Since a vector in <math style="vertical-align: 0px">\mathbb{R}^6</math> is not a vector in <math style="vertical-align: -4px">\mathbb{R}^4,</math> we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{Col }A\ne \mathbb{R}^4.</math> | ||
|} | |} | ||
| Line 45: | Line 44: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |By the Rank Theorem, we have | ||
|- | |- | ||
| | | | ||
| + | ::<math>\text{dim Nul }A+\text{dim Col }A=5.</math> | ||
| + | |- | ||
| + | |Thus, | ||
| + | |- | ||
| + | | | ||
| + | ::<math>\text{dim Nul }A=5-\text{dim Col}A.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |If we want to minimize <math style="vertical-align: -4px">\text{dim Nul }A,</math> we need to maximize <math style="vertical-align: 0px">\text{dim Col }A.</math> | ||
| + | |- | ||
| + | |To do this, we need to find out the maximum number of pivots in <math style="vertical-align: 0px">A.</math> | ||
| + | |- | ||
| + | |Since <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: -1px">7\times 5</math> matrix, the maximum number of pivots in <math style="vertical-align: 0px">A</math> is 5. | ||
| + | |- | ||
| + | |Hence, the smallest possible value for <math style="vertical-align: -1px">\text{dim Nul }A</math> is | ||
|- | |- | ||
| | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\text{dim Nul }A} & = & \displaystyle{5-\text{dim Col }A}\\ | ||
| + | &&\\ | ||
| + | & \ge & \displaystyle{5-5}\\ | ||
| + | &&\\ | ||
| + | & \ge & \displaystyle{0.} | ||
| + | \end{array}</math> | ||
|} | |} | ||
| Line 59: | Line 81: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' <math style="vertical-align: -1px">\text{dim Col }A=4</math> and <math style="vertical-align: -6px">\text{Col }A\ne \mathbb{R}^4</math> |
|- | |- | ||
| − | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -1px">0</math> |
|} | |} | ||
| − | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 12:42, 15 October 2017
(a) Suppose a matrix has 4 pivot columns. What is Is Why or why not?
(b) If is a matrix, what is the smallest possible dimension of
| Foundations: |
|---|
| 1. The dimension of is equal to the number of pivots in |
| 2. By the Rank Theorem, if is a matrix, then |
|
|
Solution:
(a)
| Step 1: |
|---|
| Since has 4 pivot columns, |
|
|
| Step 2: |
|---|
| Since is a matrix, contains vectors in |
| Since a vector in is not a vector in we have |
|
|
(b)
| Step 1: |
|---|
| By the Rank Theorem, we have |
|
|
| Thus, |
|
|
| Step 2: |
|---|
| If we want to minimize we need to maximize |
| To do this, we need to find out the maximum number of pivots in |
| Since is a matrix, the maximum number of pivots in is 5. |
| Hence, the smallest possible value for is |
|
|
| Final Answer: |
|---|
| (a) and |
| (b) |