Difference between revisions of "031 Review Part 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
 
Line 6: Line 6:
 
           1 & 2 & 5
 
           1 & 2 & 5
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 81: Line 80:
 
             1 & -3 & 2\\
 
             1 & -3 & 2\\
 
             0 & 1 & -1
 
             0 & 1 & -1
         \end{array}\right]</math>
+
         \end{array}\right].</math>
 
|}
 
|}
  
Line 94: Line 93:
 
         \end{array}\right]</math>
 
         \end{array}\right]</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:38, 15 October 2017

Let    Find    if possible.

Foundations:  
To find the inverse of a matrix    you augment the matrix   
with the identity matrix and row reduce    to the identity matrix.


Solution:

Step 1:  
We begin by augmenting the matrix    with the identity matrix. Hence, we get
Step 2:  
Now, we row reduce the matrix    to obtain the identity matrix. Hence, we have

       

Therefore, the inverse of    is


Final Answer:  
      

Return to Review Problems