Difference between revisions of "031 Review Part 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 6: | Line 6: | ||
1 & 2 & 5 | 1 & 2 & 5 | ||
\end{bmatrix}.</math> Find <math style="vertical-align: 0px">A^{-1}</math> if possible. | \end{bmatrix}.</math> Find <math style="vertical-align: 0px">A^{-1}</math> if possible. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
− | | | + | |To find the inverse of a matrix <math style="vertical-align: -4px">A,</math> you augment the matrix <math style="vertical-align: 0px">A</math> |
+ | |- | ||
+ | |with the identity matrix and row reduce <math style="vertical-align: 0px">A</math> to the identity matrix. | ||
|} | |} | ||
Line 19: | Line 20: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |We begin by augmenting the matrix <math style="vertical-align: 0px">A</math> with the identity matrix. Hence, we get | ||
|- | |- | ||
| | | | ||
+ | ::<math>\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
+ | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
+ | 1 & 2 & 5 & 0 & 0 & 1 | ||
+ | \end{array}\right].</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, we row reduce the matrix <math style="vertical-align: 0px">A</math> to obtain the identity matrix. Hence, we have | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
+ | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
+ | 1 & 2 & 5 & 0 & 0 & 1 | ||
+ | \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
+ | 0 & -2 & -5 & -2 & 1 & 0\\ | ||
+ | 0 & -1 & -3 & -1 & 0 & 1 | ||
+ | \end{array}\right]}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
+ | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
+ | 0 & -2 & -5 & -2 & 1 & 0 | ||
+ | \end{array}\right]}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
+ | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
+ | 0 & 0 & 1 & 0 & 1 & -1 | ||
+ | \end{array}\right]}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 3 & 0 & 1 & -8 & 8\\ | ||
+ | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
+ | 0 & 0 & 1 & 0 & 1 & -1 | ||
+ | \end{array}\right]}\\ | ||
+ | &&\\ | ||
+ | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
+ | 1 & 0 & 0 & -2 & 1 & 2\\ | ||
+ | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
+ | 0 & 0 & 1 & 0 & 1 & -1 | ||
+ | \end{array}\right].} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |Therefore, the inverse of <math style="vertical-align: 0px">A</math> is | ||
|- | |- | ||
| | | | ||
+ | ::<math>\left[\begin{array}{ccc} | ||
+ | -2 & 1 & 2\\ | ||
+ | 1 & -3 & 2\\ | ||
+ | 0 & 1 & -1 | ||
+ | \end{array}\right].</math> | ||
|} | |} | ||
Line 33: | Line 87: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | | + | | <math>A^{-1}=\left[\begin{array}{ccc} |
+ | -2 & 1 & 2\\ | ||
+ | 1 & -3 & 2\\ | ||
+ | 0 & 1 & -1 | ||
+ | \end{array}\right]</math> | ||
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:38, 15 October 2017
Let Find if possible.
Foundations: |
---|
To find the inverse of a matrix you augment the matrix |
with the identity matrix and row reduce to the identity matrix. |
Solution:
Step 1: |
---|
We begin by augmenting the matrix with the identity matrix. Hence, we get |
|
Step 2: |
---|
Now, we row reduce the matrix to obtain the identity matrix. Hence, we have |
|
Therefore, the inverse of is |
|
Final Answer: |
---|