Difference between revisions of "031 Review Part 2, Problem 8"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
| (3 intermediate revisions by the same user not shown) | |||
| Line 1: | Line 1: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | + | <span class="exam">Let <math style="vertical-align: -31px">A= | |
\begin{bmatrix} | \begin{bmatrix} | ||
| − | 1 & | + | 1 & 3 & 8 \\ |
| − | + | 2 & 4 &11\\ | |
| − | + | 1 & 2 & 5 | |
| − | \end{bmatrix}.</math> | + | \end{bmatrix}.</math> Find <math style="vertical-align: 0px">A^{-1}</math> if possible. |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
|- | |- | ||
| − | | | + | |To find the inverse of a matrix <math style="vertical-align: -4px">A,</math> you augment the matrix <math style="vertical-align: 0px">A</math> |
| + | |- | ||
| + | |with the identity matrix and row reduce <math style="vertical-align: 0px">A</math> to the identity matrix. | ||
|} | |} | ||
| Line 29: | Line 20: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
| + | |- | ||
| + | |We begin by augmenting the matrix <math style="vertical-align: 0px">A</math> with the identity matrix. Hence, we get | ||
|- | |- | ||
| | | | ||
| + | ::<math>\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
| + | 1 & 2 & 5 & 0 & 0 & 1 | ||
| + | \end{array}\right].</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, we row reduce the matrix <math style="vertical-align: 0px">A</math> to obtain the identity matrix. Hence, we have | ||
| + | |- | ||
| + | | | ||
| + | <math>\begin{array}{rcl} | ||
| + | \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 2 & 4 & 11 & 0 & 1 & 0\\ | ||
| + | 1 & 2 & 5 & 0 & 0 & 1 | ||
| + | \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & -2 & -5 & -2 & 1 & 0\\ | ||
| + | 0 & -1 & -3 & -1 & 0 & 1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
| + | 0 & -2 & -5 & -2 & 1 & 0 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 8 & 1 & 0 & 0\\ | ||
| + | 0 & 1 & 3 & 1 & 0 & -1\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 3 & 0 & 1 & -8 & 8\\ | ||
| + | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right]}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} | ||
| + | 1 & 0 & 0 & -2 & 1 & 2\\ | ||
| + | 0 & 1 & 0 & 1 & -3 & 2\\ | ||
| + | 0 & 0 & 1 & 0 & 1 & -1 | ||
| + | \end{array}\right].} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Therefore, the inverse of <math style="vertical-align: 0px">A</math> is | ||
|- | |- | ||
| | | | ||
| + | ::<math>\left[\begin{array}{ccc} | ||
| + | -2 & 1 & 2\\ | ||
| + | 1 & -3 & 2\\ | ||
| + | 0 & 1 & -1 | ||
| + | \end{array}\right].</math> | ||
|} | |} | ||
| Line 43: | Line 87: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | | + | | <math>A^{-1}=\left[\begin{array}{ccc} |
| + | -2 & 1 & 2\\ | ||
| + | 1 & -3 & 2\\ | ||
| + | 0 & 1 & -1 | ||
| + | \end{array}\right]</math> | ||
|} | |} | ||
| − | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:38, 15 October 2017
Let Find if possible.
| Foundations: |
|---|
| To find the inverse of a matrix you augment the matrix |
| with the identity matrix and row reduce to the identity matrix. |
Solution:
| Step 1: |
|---|
| We begin by augmenting the matrix with the identity matrix. Hence, we get |
|
|
| Step 2: |
|---|
| Now, we row reduce the matrix to obtain the identity matrix. Hence, we have |
|
|
| Therefore, the inverse of is |
|
|
| Final Answer: |
|---|