Difference between revisions of "031 Review Part 2, Problem 8"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=   
 
    \begin{bmatrix}
 
          1 & -4 & 9 & -7 \\
 
          -1 & 2  & -4 & 1 \\
 
          5 & -6 & 10 & 7
 
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
  
::<math>B=     
+
<span class="exam">Let &nbsp;<math style="vertical-align: -31px">A=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & 0 & -1 & 5 \\
+
           1 & 3 & 8 \\
           0 & -2 & 5 & -6 \\
+
           2 & 4 &11\\
           0 & 0 & 0 & 0
+
           1 & 2 & 5
         \end{bmatrix}.</math>    
+
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: 0px">A^{-1}</math>&nbsp; if possible.
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
 
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 
|-
 
|-
|
+
|To find the inverse of a matrix &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; you augment the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp;
 +
|-
 +
|with the identity matrix and row reduce &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; to the identity matrix.
 
|}
 
|}
  
Line 29: Line 20:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|We begin by augmenting the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; with the identity matrix. Hence, we get
 
|-
 
|-
 
|
 
|
 +
::<math>\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 8 & 1 & 0 & 0\\
 +
          2 & 4  & 11 & 0 & 1 & 0\\
 +
          1 & 2 & 5 & 0 & 0 & 1
 +
        \end{array}\right].</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we row reduce the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; to obtain the identity matrix. Hence, we have
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 8 & 1 & 0 & 0\\
 +
          2 & 4  & 11 & 0 & 1 & 0\\
 +
          1 & 2 & 5 & 0 & 0 & 1
 +
        \end{array}\right]} & \sim & \displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 8 & 1 & 0 & 0\\
 +
          0 & -2  & -5 & -2 & 1 & 0\\
 +
          0 & -1 & -3 & -1 & 0 & 1
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 8 & 1 & 0 & 0\\
 +
          0 & 1  & 3 & 1 & 0 & -1\\
 +
          0 & -2 & -5 & -2 & 1 & 0
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 8 & 1 & 0 & 0\\
 +
          0 & 1  & 3 & 1 & 0 & -1\\
 +
          0 & 0 & 1 & 0 & 1 & -1
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 3 & 0 & 1 & -8 & 8\\
 +
          0 & 1  & 0 & 1 & -3 & 2\\
 +
          0 & 0 & 1 & 0 & 1 & -1
 +
        \end{array}\right]}\\
 +
&&\\
 +
& \sim & \displaystyle{\left[\begin{array}{ccc|ccc} 
 +
          1 & 0 & 0 & -2 & 1 & 2\\
 +
          0 & 1  & 0 & 1 & -3 & 2\\
 +
          0 & 0 & 1 & 0 & 1 & -1
 +
        \end{array}\right].}
 +
\end{array}</math>
 +
|-
 +
|Therefore, the inverse of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\left[\begin{array}{ccc} 
 +
          -2 & 1 & 2\\
 +
            1 & -3 & 2\\
 +
            0 & 1 & -1
 +
        \end{array}\right].</math>
 
|}
 
|}
  
Line 43: Line 87:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; &nbsp; &nbsp;  
+
|&nbsp;&nbsp; &nbsp; &nbsp; <math>A^{-1}=\left[\begin{array}{ccc} 
 +
          -2 & 1 & 2\\
 +
            1 & -3 & 2\\
 +
            0 & 1 & -1
 +
        \end{array}\right]</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:38, 15 October 2017

Let    Find    if possible.

Foundations:  
To find the inverse of a matrix    you augment the matrix   
with the identity matrix and row reduce    to the identity matrix.


Solution:

Step 1:  
We begin by augmenting the matrix    with the identity matrix. Hence, we get
Step 2:  
Now, we row reduce the matrix    to obtain the identity matrix. Hence, we have

       

Therefore, the inverse of    is


Final Answer:  
      

Return to Review Problems