Difference between revisions of "031 Review Part 2, Problem 7"

From Grad Wiki
Jump to navigation Jump to search
 
Line 24: Line 24:
 
           -1 & 1
 
           -1 & 1
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
 
         \end{bmatrix}.</math>&nbsp; Find &nbsp;<math style="vertical-align: -4px">AB,~BA^T</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">A-B^T.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 205: Line 204:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:36, 15 October 2017

(a) Let    be a transformation given by

Determine whether    is a linear transformation. Explain.

(b) Let    and    Find    and  

Foundations:  
A map    is a linear transformation if
and
for all    and all  


Solution:

(a)

Step 1:  
We claim that    is not a linear transformation.
Consider the vectors    and  
Then, we have

       

Step 2:  
On the other hand, notice

       

So, now we know
Therefore,    is not a linear transformation.

(b)

Step 1:  
Using the row-column rule for multiplication, we have

       

Step 2:  
Now,    and    are both    matrices.
Hence,    is undefined.
Step 3:  
For    we have

       


Final Answer:  
   (a)       is not a linear transformation
   (b)         is undefined and  

Return to Review Problems