Difference between revisions of "031 Review Part 2, Problem 7"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">(a) Let <math style="vertical-align: -2px">T:\mathbb{R}^2\rightarrow \mathbb{R}^2</math> be a transformation given by |
− | |||
− | |||
− | |||
− | |||
− | |||
− | ::<math> | + | ::<math>T\bigg( |
− | + | \begin{bmatrix} | |
− | + | x \\ | |
− | + | y | |
− | + | \end{bmatrix} | |
− | \end{bmatrix} | + | \bigg)= |
− | + | \begin{bmatrix} | |
− | + | 1-xy \\ | |
+ | x+y | ||
+ | \end{bmatrix}.</math> | ||
− | <span class="exam"> | + | <span class="exam">Determine whether <math style="vertical-align: 0px">T</math> is a linear transformation. Explain. |
+ | <span class="exam">(b) Let <math style="vertical-align: -19px">A= | ||
+ | \begin{bmatrix} | ||
+ | 1 & -3 & 0 \\ | ||
+ | -4 & 1 &1 | ||
+ | \end{bmatrix}</math> and <math style="vertical-align: -32px">B= | ||
+ | \begin{bmatrix} | ||
+ | 2 & 1\\ | ||
+ | 1 & 0 \\ | ||
+ | -1 & 1 | ||
+ | \end{bmatrix}.</math> Find <math style="vertical-align: -4px">AB,~BA^T</math> and <math style="vertical-align: 0px">A-B^T.</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |A map <math style="vertical-align: -2px">T:\mathbb{R}^n\rightarrow \mathbb{R}^m</math> is a linear transformation if | ||
|- | |- | ||
| | | | ||
+ | ::<math>T(\vec{x}+\vec{y})=T(\vec{x})+T(\vec{y})</math> | ||
+ | |- | ||
+ | | | ||
+ | :and | ||
+ | |- | ||
+ | | | ||
+ | ::<math>T(a\vec{x})=aT(\vec{x})</math> | ||
+ | |- | ||
+ | | | ||
+ | :for all <math style="vertical-align: -4px">\vec{x},\vec{y}\in \mathbb{R}^n</math> and all <math style="vertical-align: -1px">a\in \mathbb{R}.</math> | ||
|} | |} | ||
Line 31: | Line 50: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |We claim that <math style="vertical-align: 0px">T</math> is not a linear transformation. | ||
+ | |- | ||
+ | |Consider the vectors <math style="vertical-align: -20px">\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> and <math style="vertical-align: -20px">\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}.</math> | ||
+ | |- | ||
+ | |Then, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)} & = & \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 2 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |On the other hand, notice | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)} & = & \displaystyle{\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 1 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 2\\ | ||
+ | 2 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |- | ||
+ | |So, now we know | ||
+ | |- | ||
+ | | | ||
+ | ::<math>T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}+\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg)\neq T\bigg(\begin{bmatrix} | ||
+ | 1\\ | ||
+ | 0 | ||
+ | \end{bmatrix}\bigg)+T\bigg(\begin{bmatrix} | ||
+ | 0\\ | ||
+ | 1 | ||
+ | \end{bmatrix}\bigg).</math> | ||
+ | |- | ||
+ | |Therefore, <math style="vertical-align: 0px">T</math> is not a linear transformation. | ||
|} | |} | ||
Line 45: | Line 134: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using the row-column rule for multiplication, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{AB} & = & \displaystyle{\begin{bmatrix} | ||
+ | 1 & -3 & 0 \\ | ||
+ | -4 & 1 &1 | ||
+ | \end{bmatrix}\begin{bmatrix} | ||
+ | 2 & 1\\ | ||
+ | 1 & 0 \\ | ||
+ | -1 & 1 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | 1(2)+-3(1)+0(-1) & 1(1)+-3(0)+0(1)\\ | ||
+ | -4(2)+1(1)+1(-1) & -4(1)+1(0)+1(1) | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | -1 & 1\\ | ||
+ | -8 & -3 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Now, <math style="vertical-align: 0px">B</math> and <math style="vertical-align: 0px">A^T</math> are both <math style="vertical-align: 0px">3\times 2</math> matrices. | ||
+ | |- | ||
+ | |Hence, <math style="vertical-align: 0px">BA^T</math> is undefined. | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 3: | ||
+ | |- | ||
+ | |For <math style="vertical-align: -5px">A-B^T,</math> we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{A-B^T} & = & \displaystyle{\begin{bmatrix} | ||
+ | 1 & -3 & 0 \\ | ||
+ | -4 & 1 &1 | ||
+ | \end{bmatrix}-\begin{bmatrix} | ||
+ | 2 & 1 & -1\\ | ||
+ | 1 & 0 & 1\\ | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | -1 & -4 & 1\\ | ||
+ | -5 & 1 & 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 59: | Line 194: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math style="vertical-align: 0px">T</math> is not a linear transformation |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math style="vertical-align: -20px">AB=\begin{bmatrix} |
+ | -1 & 1\\ | ||
+ | -8 & -3 | ||
+ | \end{bmatrix},</math> <math style="vertical-align: -1px">BA^T</math> is undefined and <math style="vertical-align: -20px">A-B^T=\begin{bmatrix} | ||
+ | -1 & -4 & 1\\ | ||
+ | -5 & 1 & 0 | ||
+ | \end{bmatrix}</math> | ||
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:36, 15 October 2017
(a) Let be a transformation given by
Determine whether is a linear transformation. Explain.
(b) Let and Find and
Foundations: |
---|
A map is a linear transformation if |
|
|
|
|
Solution:
(a)
Step 1: |
---|
We claim that is not a linear transformation. |
Consider the vectors and |
Then, we have |
|
Step 2: |
---|
On the other hand, notice |
|
So, now we know |
|
Therefore, is not a linear transformation. |
(b)
Step 1: |
---|
Using the row-column rule for multiplication, we have |
|
Step 2: |
---|
Now, and are both matrices. |
Hence, is undefined. |
Step 3: |
---|
For we have |
|
Final Answer: |
---|
(a) is not a linear transformation |
(b) is undefined and |