Difference between revisions of "031 Review Part 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 14: | Line 14: | ||
<span class="exam">(c) Let <math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math> Compute the orthogonal projection of <math style="vertical-align: -3px">\vec{y}</math> onto <math style="vertical-align: 0px">L.</math> | <span class="exam">(c) Let <math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math> Compute the orthogonal projection of <math style="vertical-align: -3px">\vec{y}</math> onto <math style="vertical-align: 0px">L.</math> | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 27: | Line 26: | ||
|- | |- | ||
| | | | ||
− | ::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{ | + | ::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}.</math> |
|} | |} | ||
Line 141: | Line 140: | ||
&&\\ | &&\\ | ||
& = & \displaystyle{\begin{bmatrix} | & = & \displaystyle{\begin{bmatrix} | ||
− | \frac{1}{ | + | \frac{1}{10} \\ |
− | + | \frac{-3}{10} \\ | |
0 | 0 | ||
\end{bmatrix}.} | \end{bmatrix}.} | ||
Line 161: | Line 160: | ||
|- | |- | ||
| '''(b)''' <math>\begin{bmatrix} | | '''(b)''' <math>\begin{bmatrix} | ||
− | \frac{1}{ | + | \frac{1}{10} \\ |
− | + | \frac{-3}{10} \\ | |
0 | 0 | ||
\end{bmatrix}</math> | \end{bmatrix}</math> | ||
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:34, 15 October 2017
Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Compute the orthogonal projection of onto
Foundations: |
---|
1. The distance between the vectors and is |
|
2. The orthogonal projection of onto is |
|
Solution:
(a)
Step 1: |
---|
First, we calculate |
We get |
|
Step 2: |
---|
Now, to get a unit vector in the direction of we take the vector and divide by |
Hence, we get the vector |
(b)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
(c)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
Final Answer: |
---|
(a) |
(b) |
(b) |