Difference between revisions of "031 Review Part 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
 
Line 14: Line 14:
 
          
 
          
 
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
 
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 27: Line 26:
 
|-
 
|-
 
|
 
|
::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{u}}{\vec{u}\cdot \vec{u}}\vec{u}.</math>
+
::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}.</math>
 
|}
 
|}
  
Line 141: Line 140:
 
&&\\
 
&&\\
 
& = & \displaystyle{\begin{bmatrix}
 
& = & \displaystyle{\begin{bmatrix}
           \frac{1}{5} \\
+
           \frac{1}{10} \\
           -\frac{3}{5} \\
+
           \frac{-3}{10} \\
 
           0
 
           0
 
         \end{bmatrix}.}
 
         \end{bmatrix}.}
Line 161: Line 160:
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\begin{bmatrix}
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\begin{bmatrix}
           \frac{1}{5} \\
+
           \frac{1}{10} \\
           -\frac{3}{5} \\
+
           \frac{-3}{10} \\
 
           0
 
           0
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:34, 15 October 2017

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

Foundations:  
1. The distance between the vectors    and    is
2. The orthogonal projection of    onto    is


Solution:

(a)

Step 1:  
First, we calculate   
We get

       

Step 2:  
Now, to get a unit vector in the direction of    we take the vector    and divide by  
Hence, we get the vector
       

(b)

Step 1:  
Using the formula in the Foundations section, we have

       

Step 2:  
Continuing, we get

       

(c)

Step 1:  
Using the formula in the Foundations section, we have

       

Step 2:  
Continuing, we get

       


Final Answer:  
   (a)    
   (b)    
   (b)    

Return to Review Problems