Difference between revisions of "031 Review Part 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam"> Let <math>\vec{v}=\begin{bmatrix} |
− | + | -1 \\ | |
− | 1 | + | 3 \\ |
− | + | 0 | |
− | + | \end{bmatrix}</math> and <math>\vec{y}=\begin{bmatrix} | |
− | \end{bmatrix}</math> and | + | 2 \\ |
− | + | 0 \\ | |
− | + | 5 | |
− | + | \end{bmatrix}.</math> | |
− | + | ||
− | 0 | + | <span class="exam">(a) Find a unit vector in the direction of <math style="vertical-align: 0px">\vec{v}.</math> |
− | + | ||
− | \end{bmatrix}.</math> | + | <span class="exam">(b) Find the distance between <math style="vertical-align: 0px">\vec{v}</math> and <math style="vertical-align: -3px">\vec{y}.</math> |
− | + | ||
− | <span class="exam">(a) | + | <span class="exam">(c) Let <math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math> Compute the orthogonal projection of <math style="vertical-align: -3px">\vec{y}</math> onto <math style="vertical-align: 0px">L.</math> |
− | |||
− | <span class="exam">(b) Find | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |'''1.''' The distance between the vectors <math style="vertical-align: 0px">\vec{u}</math> and <math style="vertical-align: 0px">\vec{v}</math> is | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\text{dist}(\vec{u},\vec{v})=||\vec{u}-\vec{v}||.</math> | ||
+ | |- | ||
+ | |'''2.''' The orthogonal projection of <math style="vertical-align: -3px">\vec{y}</math> onto <math style="vertical-align: 0px">L</math> is | ||
|- | |- | ||
| | | | ||
+ | ::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}.</math> | ||
|} | |} | ||
Line 31: | Line 36: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |First, we calculate <math style="vertical-align: -4px">||\vec{v}||.</math> | ||
+ | |- | ||
+ | |We get | ||
+ | |- | ||
+ | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{||\vec{v}||} & = & \displaystyle{\sqrt{(-1)^2+3^2+0^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{1+9}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{10}.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 2: | ||
+ | |- | ||
+ | |Now, to get a unit vector in the direction of <math style="vertical-align: -4px">\vec{v},</math> we take the vector <math style="vertical-align: 0px">\vec{v}</math> and divide by <math style="vertical-align: -4px">||\vec{v}||.</math> | ||
+ | |- | ||
+ | |Hence, we get the vector | ||
+ | |- | ||
+ | | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\frac{1}{||\vec{v}||}\vec{v}} & = & \displaystyle{\frac{1}{\sqrt{10}}\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | \frac{-1}{\sqrt{10}} \\ | ||
+ | \frac{3}{\sqrt{10}} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
+ | |} | ||
+ | |||
+ | '''(b)''' | ||
+ | |||
+ | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
+ | !Step 1: | ||
+ | |- | ||
+ | |Using the formula in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{dist}(\vec{v},\vec{y})} & = & \displaystyle{||\vec{v}-\vec{y}||}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\Bigg|\Bigg|\begin{bmatrix} | ||
+ | -3 \\ | ||
+ | 3 \\ | ||
+ | -5 | ||
+ | \end{bmatrix}\Bigg|\Bigg|.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we get | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{dist}(\vec{v},\vec{y}) } & = & \displaystyle{\sqrt{(-3)^2+3^2+(-5)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{9+9+25}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{34}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
− | '''( | + | '''(c)''' |
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using the formula in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\hat{y}} & = & \displaystyle{\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-1(2)+3(0)+0(5)}{(-1)(-1)+3(3)+0(0)}\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we get | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\hat{y}} & = & \displaystyle{\frac{-2}{20}\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | \frac{1}{10} \\ | ||
+ | \frac{-3}{10} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 59: | Line 151: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>\begin{bmatrix} |
+ | \frac{-1}{\sqrt{10}} \\ | ||
+ | \frac{3}{\sqrt{10}} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | | '''(b)''' <math>\sqrt{34}</math> | ||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>\begin{bmatrix} |
+ | \frac{1}{10} \\ | ||
+ | \frac{-3}{10} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:34, 15 October 2017
Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Compute the orthogonal projection of onto
Foundations: |
---|
1. The distance between the vectors and is |
|
2. The orthogonal projection of onto is |
|
Solution:
(a)
Step 1: |
---|
First, we calculate |
We get |
|
Step 2: |
---|
Now, to get a unit vector in the direction of we take the vector and divide by |
Hence, we get the vector |
(b)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
(c)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
Final Answer: |
---|
(a) |
(b) |
(b) |