Difference between revisions of "031 Review Part 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=  
+
<span class="exam"> Let &nbsp;<math>\vec{v}=\begin{bmatrix}
    \begin{bmatrix}
+
           -1 \\
           1 & -4 & 9 & -7 \\
+
           3 \\
           -1 & 2  & -4 & 1 \\
+
           0
           5 & -6 & 10 & 7
+
         \end{bmatrix}</math>&nbsp; and &nbsp;<math>\vec{y}=\begin{bmatrix}
         \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
+
           2 \\
 
+
           0 \\
::<math>B=  
+
           5
    \begin{bmatrix}
+
         \end{bmatrix}.</math>
           1 & 0 & -1 & 5 \\
+
       
           0 & -2  & 5 & -6 \\
+
<span class="exam">(a) Find a unit vector in the direction of &nbsp;<math style="vertical-align: 0px">\vec{v}.</math>
           0 & 0 & 0 & 0
+
       
         \end{bmatrix}.</math>    
+
<span class="exam">(b) Find the distance between &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; and &nbsp;<math style="vertical-align: -3px">\vec{y}.</math>
   
+
       
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
+
<span class="exam">(c) Let &nbsp;<math style="vertical-align: -5px">L=\text{Span }\{\vec{v}\}.</math>&nbsp; Compute the orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L.</math>
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
 
 
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|'''1.''' The distance between the vectors &nbsp;<math style="vertical-align: 0px">\vec{u}</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; is
 +
|-
 +
|
 +
::<math>\text{dist}(\vec{u},\vec{v})=||\vec{u}-\vec{v}||.</math>
 +
|-
 +
|'''2.''' The orthogonal projection of &nbsp;<math style="vertical-align: -3px">\vec{y}</math>&nbsp; onto &nbsp;<math style="vertical-align: 0px">L</math>&nbsp; is
 
|-
 
|-
 
|
 
|
 +
::<math>\hat{y}=\text{proj}_L \vec{y}=\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}.</math>
 
|}
 
|}
  
Line 31: Line 36:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|First, we calculate &nbsp;<math style="vertical-align: -4px">||\vec{v}||.</math>&nbsp;
 +
|-
 +
|We get
 +
|-
 +
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{||\vec{v}||} & = & \displaystyle{\sqrt{(-1)^2+3^2+0^2}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{1+9}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{10}.}
 +
\end{array}</math>
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 2: &nbsp;
 +
|-
 +
|Now, to get a unit vector in the direction of &nbsp;<math style="vertical-align: -4px">\vec{v},</math>&nbsp; we take the vector &nbsp;<math style="vertical-align: 0px">\vec{v}</math>&nbsp; and divide by &nbsp;<math style="vertical-align: -4px">||\vec{v}||.</math>
 +
|-
 +
|Hence, we get the vector
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\frac{1}{||\vec{v}||}\vec{v}} & = & \displaystyle{\frac{1}{\sqrt{10}}\begin{bmatrix}
 +
          -1 \\
 +
          3 \\
 +
          0
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          \frac{-1}{\sqrt{10}} \\
 +
          \frac{3}{\sqrt{10}} \\
 +
          0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 +
|}
 +
 +
'''(b)'''
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 1: &nbsp;
 +
|-
 +
|Using the formula in the Foundations section, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{dist}(\vec{v},\vec{y})} & = & \displaystyle{||\vec{v}-\vec{y}||}\\
 +
&&\\
 +
& = & \displaystyle{\Bigg|\Bigg|\begin{bmatrix}
 +
          -3 \\
 +
          3 \\
 +
          -5
 +
        \end{bmatrix}\Bigg|\Bigg|.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Continuing, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{dist}(\vec{v},\vec{y}) } & = & \displaystyle{\sqrt{(-3)^2+3^2+(-5)^2}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{9+9+25}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{34}.}
 +
\end{array}</math>
 
|}
 
|}
  
'''(b)'''
+
'''(c)'''
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Using the formula in the Foundations section, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\hat{y}} & = & \displaystyle{\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}}\\
 +
&&\\
 +
& = & \displaystyle{\frac{-1(2)+3(0)+0(5)}{(-1)(-1)+3(3)+0(0)}\begin{bmatrix}
 +
          -1 \\
 +
          3 \\
 +
          0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Continuing, we get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\hat{y}} & = & \displaystyle{\frac{-2}{20}\begin{bmatrix}
 +
          -1 \\
 +
          3 \\
 +
          0
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          \frac{1}{10} \\
 +
          \frac{-3}{10} \\
 +
          0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 59: Line 151:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\begin{bmatrix}
 +
          \frac{-1}{\sqrt{10}} \\
 +
          \frac{3}{\sqrt{10}} \\
 +
          0
 +
        \end{bmatrix}</math>
 +
|-
 +
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\sqrt{34}</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\begin{bmatrix}
 +
          \frac{1}{10} \\
 +
          \frac{-3}{10} \\
 +
          0
 +
        \end{bmatrix}</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:34, 15 October 2017

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  

Foundations:  
1. The distance between the vectors    and    is
2. The orthogonal projection of    onto    is


Solution:

(a)

Step 1:  
First, we calculate   
We get

       

Step 2:  
Now, to get a unit vector in the direction of    we take the vector    and divide by  
Hence, we get the vector
       

(b)

Step 1:  
Using the formula in the Foundations section, we have

       

Step 2:  
Continuing, we get

       

(c)

Step 1:  
Using the formula in the Foundations section, we have

       

Step 2:  
Continuing, we get

       


Final Answer:  
   (a)    
   (b)    
   (b)    

Return to Review Problems