Difference between revisions of "031 Review Part 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
<span class="exam">(b) <math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math> | <span class="exam">(b) <math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math> | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 59: | Line 58: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using properties of determinants, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A^T)\cdot \text{det }(B^{-1})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\text{det }(A)\cdot \text{det }(B^{-1}).} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we obtain | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A) \cdot \frac{1}{\text{det }(B)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(-10)\cdot \frac{1}{5}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-2.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 73: | Line 88: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' <math>\text{det }(3A)=-7290 | + | | '''(a)''' <math>\text{det }(3A)=-7290</math> |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>\text{det }(A^TB^{-1})=-2</math> |
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:29, 15 October 2017
Let and be matrices with and Use properties of determinants to compute:
(a)
(b)
Foundations: |
---|
Recall: |
1. If the matrix is identical to the matrix except the entries in one of the rows of |
|
|
2. |
3. For an invertible matrix since and we have |
|
Solution:
(a)
Step 1: |
---|
Every entry of the matrix is times the corresponding entry of |
So, we multiply every row of the matrix by to get |
Step 2: |
---|
Hence, we have |
|
(b)
Step 1: |
---|
Using properties of determinants, we have |
|
Step 2: |
---|
Continuing, we obtain |
|
Final Answer: |
---|
(a) |
(b) |