Difference between revisions of "031 Review Part 2, Problem 5"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) (Created page with "<span class="exam">Consider the matrix <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...") |
Kayla Murray (talk | contribs) |
||
(4 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
− | <span class="exam"> | + | <span class="exam">Let <math style="vertical-align: 0px">A</math> and <math style="vertical-align: 0px">B</math> be <math style="vertical-align: 0px">6\times 6</math> matrices with <math style="vertical-align: -1px">\text{det }A=-10</math> and <math style="vertical-align: 0px">\text{det }B=5.</math> Use properties of determinants to compute: |
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | <span class="exam">(a) <math style="vertical-align: -2px">\text{det }3A</math> | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | <span class="exam">(a) | ||
− | |||
− | |||
+ | <span class="exam">(b) <math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math> | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Foundations: | !Foundations: | ||
+ | |- | ||
+ | |Recall: | ||
+ | |- | ||
+ | |'''1.''' If the matrix <math style="vertical-align: 0px">B</math> is identical to the matrix <math style="vertical-align: 0px">A</math> except the entries in one of the rows of <math style="vertical-align: 0px">B</math> | ||
+ | |- | ||
+ | | | ||
+ | :are each equal to the corresponding entries of <math style="vertical-align: 0px">A</math> multiplied by the same scalar <math style="vertical-align: -4px">c,</math> then | ||
+ | |- | ||
+ | | | ||
+ | ::<math>\text{det }B=c(\text{det }A).</math> | ||
+ | |- | ||
+ | |'''2.''' <math style="vertical-align: -5px">\text{det } (AB)=(\text{det }A)(\text{det }B)</math> | ||
+ | |- | ||
+ | |'''3.''' For an invertible matrix <math style="vertical-align: -4px">A,</math> since <math style="vertical-align: 0px">AA^{-1}=I</math> and <math style="vertical-align: -4px">\text{det }I=1,</math> we have | ||
|- | |- | ||
| | | | ||
+ | ::<math>\text{det }A^{-1}=\frac{1}{\text{det } A}.</math> | ||
|} | |} | ||
Line 32: | Line 34: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | | | + | |Every entry of the matrix <math style="vertical-align: 0px">3A</math> is <math style="vertical-align: 0px">3</math> times the corresponding entry of <math style="vertical-align: 0px">A.</math> |
+ | |- | ||
+ | |So, we multiply every row of the matrix <math style="vertical-align: 0px">A</math> by <math style="vertical-align: 0px">3</math> to get <math style="vertical-align: 0px">3A.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Hence, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(3A)} & = & \displaystyle{3^6(\text{det }A)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{3^6 (-10)}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-7290.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 45: | Line 58: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using properties of determinants, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A^T)\cdot \text{det }(B^{-1})}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\text{det }(A)\cdot \text{det }(B^{-1}).} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we obtain | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A) \cdot \frac{1}{\text{det }(B)}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{(-10)\cdot \frac{1}{5}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{-2.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 59: | Line 88: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>\text{det }(3A)=-7290</math> |
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>\text{det }(A^TB^{-1})=-2</math> |
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:29, 15 October 2017
Let and be matrices with and Use properties of determinants to compute:
(a)
(b)
Foundations: |
---|
Recall: |
1. If the matrix is identical to the matrix except the entries in one of the rows of |
|
|
2. |
3. For an invertible matrix since and we have |
|
Solution:
(a)
Step 1: |
---|
Every entry of the matrix is times the corresponding entry of |
So, we multiply every row of the matrix by to get |
Step 2: |
---|
Hence, we have |
|
(b)
Step 1: |
---|
Using properties of determinants, we have |
|
Step 2: |
---|
Continuing, we obtain |
|
Final Answer: |
---|
(a) |
(b) |