Difference between revisions of "031 Review Part 2, Problem 5"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(4 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=  
+
<span class="exam">Let &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; be &nbsp;<math style="vertical-align: 0px">6\times 6</math>&nbsp; matrices with &nbsp;<math style="vertical-align: -1px">\text{det }A=-10</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{det }B=5.</math>&nbsp; Use properties of determinants to compute:
    \begin{bmatrix}
 
          1 & -4 & 9 & -7 \\
 
          -1 & & -4 & 1 \\
 
          5 & -6 & 10 & 7
 
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
 
  
::<math>B=   
+
<span class="exam">(a) &nbsp;<math style="vertical-align: -2px">\text{det }3A</math>
    \begin{bmatrix}
 
          1 & 0 & -1 & 5 \\
 
          0 & -2  & 5 & -6 \\
 
          0 & 0 & 0 & 0
 
        \end{bmatrix}.</math>     
 
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
 +
<span class="exam">(b) &nbsp;<math style="vertical-align: -7px">\text{det }(A^TB^{-1})</math>
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|Recall:
 +
|-
 +
|'''1.''' If the matrix &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; is identical to the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; except the entries in one of the rows of &nbsp;<math style="vertical-align: 0px">B</math>&nbsp;
 +
|-
 +
|
 +
:are each equal to the corresponding entries of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; multiplied by the same scalar &nbsp;<math style="vertical-align: -4px">c,</math>&nbsp; then
 +
|-
 +
|
 +
::<math>\text{det }B=c(\text{det }A).</math> 
 +
|-
 +
|'''2.''' &nbsp;<math style="vertical-align: -5px">\text{det } (AB)=(\text{det }A)(\text{det }B)</math>
 +
|-
 +
|'''3.''' For an invertible matrix &nbsp;<math style="vertical-align: -4px">A,</math>&nbsp; since &nbsp;<math style="vertical-align: 0px">AA^{-1}=I</math>&nbsp; and &nbsp;<math style="vertical-align: -4px">\text{det }I=1,</math>&nbsp; we have
 
|-
 
|-
 
|
 
|
 +
::<math>\text{det }A^{-1}=\frac{1}{\text{det } A}.</math>
 
|}
 
|}
  
Line 32: Line 34:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|Every entry of the matrix &nbsp;<math style="vertical-align: 0px">3A</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; times the corresponding entry of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|So, we multiply every row of the matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; by &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; to get &nbsp;<math style="vertical-align: 0px">3A.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Hence, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(3A)} & = & \displaystyle{3^6(\text{det }A)}\\
 +
&&\\
 +
& = & \displaystyle{3^6 (-10)}\\
 +
&&\\
 +
& = & \displaystyle{-7290.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 45: Line 58:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|Using properties of determinants, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A^T)\cdot \text{det }(B^{-1})}\\
 +
&&\\
 +
& = & \displaystyle{\text{det }(A)\cdot \text{det }(B^{-1}).}
 +
\end{array}</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Continuing, we obtain
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(A^TB^{-1})} & = & \displaystyle{\text{det }(A) \cdot \frac{1}{\text{det }(B)}}\\
 +
&&\\
 +
& = & \displaystyle{(-10)\cdot \frac{1}{5}}\\
 +
&&\\
 +
& = & \displaystyle{-2.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 59: Line 88:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math>\text{det }(3A)=-7290</math>
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; <math>\text{det }(A^TB^{-1})=-2</math>
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:29, 15 October 2017

Let    and    be    matrices with    and    Use properties of determinants to compute:

(a)  

(b)  

Foundations:  
Recall:
1. If the matrix    is identical to the matrix    except the entries in one of the rows of   
are each equal to the corresponding entries of    multiplied by the same scalar    then
2.  
3. For an invertible matrix    since    and    we have


Solution:

(a)

Step 1:  
Every entry of the matrix    is    times the corresponding entry of  
So, we multiply every row of the matrix    by    to get  
Step 2:  
Hence, we have

       

(b)

Step 1:  
Using properties of determinants, we have

       

Step 2:  
Continuing, we obtain

       


Final Answer:  
   (a)    
   (b)    

Return to Review Problems