Difference between revisions of "031 Review Part 2, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 12: | Line 12: | ||
<span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | <span class="exam">(b) Define a linear transformation <math style="vertical-align: 0px">T</math> by the formula <math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math> Is <math style="vertical-align: 0px">T</math> onto? Explain. | ||
− | |||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
Line 19: | Line 18: | ||
|'''1.''' A matrix <math style="vertical-align: 0px">A</math> is invertible if and only if <math style="vertical-align: -5px">\text{det }A\neq 0.</math> | |'''1.''' A matrix <math style="vertical-align: 0px">A</math> is invertible if and only if <math style="vertical-align: -5px">\text{det }A\neq 0.</math> | ||
|- | |- | ||
− | |'''2.''' A linear transformation <math style="vertical-align: 0px">T</math> given by <math style="vertical-align: -5px">T(\vec{x})=A\vec{x}</math> where <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix | + | |'''2.''' A linear transformation <math style="vertical-align: 0px">T</math> given by <math style="vertical-align: -5px">T(\vec{x})=A\vec{x},</math> where <math style="vertical-align: 0px">A</math> is a <math style="vertical-align: 0px">m\times n</math> matrix, is onto |
|- | |- | ||
| | | | ||
Line 61: | Line 60: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Since <math style="vertical-align: -4px">\text{det }B=0,</math> we | + | |Since <math style="vertical-align: -4px">\text{det }B=0,</math> we know that <math style="vertical-align: 0px">B</math> is not invertible. |
|} | |} | ||
Line 91: | Line 90: | ||
| '''(b)''' No, see explaination above. | | '''(b)''' No, see explaination above. | ||
|} | |} | ||
− | [[031_Review_Part_2|'''<u>Return to | + | [[031_Review_Part_2|'''<u>Return to Review Problems</u>''']] |
Latest revision as of 13:17, 15 October 2017
Let
(a) Is invertible? Explain.
(b) Define a linear transformation by the formula Is onto? Explain.
Foundations: |
---|
1. A matrix is invertible if and only if |
2. A linear transformation given by where is a matrix, is onto |
|
Solution:
(a)
Step 1: |
---|
We begin by calculating |
To do this, we use cofactor expansion along the second row first and then the first column. |
So, we have |
|
Step 2: |
---|
Since we know that is not invertible. |
(b)
Step 1: |
---|
If was onto, then spans |
This would mean that contains 4 pivots. |
Step 2: |
---|
But, if has 4 pivots, then would be invertible, which is not true. |
Hence, is not onto. |
Final Answer: |
---|
(a) Since we have that is not invertible. |
(b) No, see explaination above. |