Difference between revisions of "031 Review Part 2, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
(Created page with "<span class="exam">Consider the matrix  <math style="vertical-align: -31px">A= \begin{bmatrix} 1 & -4 & 9 & -7 \\ -1 & 2 & -4 & 1 \\...")
 
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
<span class="exam">Consider the matrix &nbsp;<math style="vertical-align: -31px">A=     
+
<span class="exam">Let 
 +
&nbsp;<math>B=     
 
     \begin{bmatrix}
 
     \begin{bmatrix}
           1 & -4 & 9 & -7 \\
+
           1 & -2 & 3 & 4\\
          -1 & & -4 & 1 \\
+
           0 & 3 &0 &0\\
           5 & -6 & 10 & 7
+
           0 & 5 & 1 & 2\\
        \end{bmatrix}</math>&nbsp; and assume that it is row equivalent to the matrix
+
           0 & -1 & 3 & 6
 
+
         \end{bmatrix}.
::<math>B=   
+
</math>
    \begin{bmatrix}
+
 
           1 & 0 & -1 & 5 \\
+
<span class="exam">(a) Is &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; invertible? Explain.
           0 & -& 5 & -6 \\
 
          0 & 0 & 0 & 0
 
         \end{bmatrix}.</math>    
 
   
 
<span class="exam">(a) List rank &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{dim Nul }A.</math>
 
 
 
<span class="exam">(b) Find bases for &nbsp;<math style="vertical-align: 0px">\text{Col }A</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>&nbsp; Find an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: -5px">\text{Col }A,</math>&nbsp; as well as an example of a nonzero vector that belongs to &nbsp;<math style="vertical-align: 0px">\text{Nul }A.</math>
 
  
 +
<span class="exam">(b) Define a linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; by the formula &nbsp;<math style="vertical-align: -5px">T(\vec{x})=B\vec{x}.</math>&nbsp; Is &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; onto? Explain.
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations: &nbsp;  
 
!Foundations: &nbsp;  
 +
|-
 +
|'''1.''' A matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is invertible if and only if &nbsp;<math style="vertical-align: -5px">\text{det }A\neq 0.</math>
 +
|-
 +
|'''2.''' A linear transformation &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; given by &nbsp;<math style="vertical-align: -5px">T(\vec{x})=A\vec{x},</math>&nbsp; where &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a &nbsp;<math style="vertical-align: 0px">m\times n</math>&nbsp; matrix, is onto
 
|-
 
|-
 
|
 
|
 +
::if and only if the columns of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; span &nbsp;<math style="vertical-align: 0px">\mathbb{R}^m.</math>
 
|}
 
|}
  
Line 31: Line 31:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 +
|-
 +
|We begin by calculating &nbsp;<math style="vertical-align: -1px">\text{det }B.</math>
 +
|-
 +
|To do this, we use cofactor expansion along the second row first and then the first column.
 +
|-
 +
|So, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }B} & = & \displaystyle{3(-1)^{2+2}\left|\begin{array}{ccc} 
 +
          1 & 3 & 4 \\
 +
          0 & 1  & 2 \\
 +
          0 & 3 & 6
 +
        \end{array}\right|}\\
 +
&&\\
 +
& = & \displaystyle{3\cdot 1 \cdot (-1)^{1+1} \left|\begin{array}{cc} 
 +
          1 & 2 \\
 +
          3 & 6
 +
        \end{array}\right|}\\
 +
&&\\
 +
& = & \displaystyle{3(6-6)}\\
 +
&&\\
 +
& = & \displaystyle{0.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 38: Line 60:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Since &nbsp;<math style="vertical-align: -4px">\text{det }B=0,</math>&nbsp; we know that &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; is not invertible.
 
|}
 
|}
  
Line 46: Line 68:
 
!Step 1: &nbsp;  
 
!Step 1: &nbsp;  
 
|-
 
|-
|
+
|If &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; was onto, then &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; spans &nbsp;<math style="vertical-align: 0px">\mathbb{R}^4.</math>
 +
|-
 +
|This would mean that &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; contains 4 pivots.
 
|}
 
|}
  
Line 52: Line 76:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|But, if &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; has 4 pivots, then &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; would be invertible, which is not true.
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: 0px">T</math>&nbsp; is not onto.
 
|}
 
|}
  
Line 59: Line 85:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; Since &nbsp;<math style="vertical-align: -4px">\text{det }B=0,</math>&nbsp; we have that &nbsp;<math style="vertical-align: 0px">B</math>&nbsp; is not invertible.
 +
 
 
|-
 
|-
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp; No, see explaination above.
 
|}
 
|}
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_2|'''<u>Return to Review Problems</u>''']]

Latest revision as of 13:17, 15 October 2017

Let  

(a) Is    invertible? Explain.

(b) Define a linear transformation    by the formula    Is    onto? Explain.

Foundations:  
1. A matrix    is invertible if and only if  
2. A linear transformation    given by    where    is a    matrix, is onto
if and only if the columns of    span  


Solution:

(a)

Step 1:  
We begin by calculating  
To do this, we use cofactor expansion along the second row first and then the first column.
So, we have

       

Step 2:  
Since    we know that    is not invertible.

(b)

Step 1:  
If    was onto, then    spans  
This would mean that    contains 4 pivots.
Step 2:  
But, if    has 4 pivots, then    would be invertible, which is not true.
Hence,    is not onto.


Final Answer:  
   (a)     Since    we have that    is not invertible.
   (b)     No, see explaination above.

Return to Review Problems