Difference between revisions of "031 Review Part 1, Problem 2"

From Grad Wiki
Jump to navigation Jump to search
 
(One intermediate revision by the same user not shown)
Line 21: Line 21:
 
|which is diagonalizable.
 
|which is diagonalizable.
 
|-
 
|-
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a diagonal matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
+
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a triangular matrix, the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are the entries on the diagonal.
 
|-
 
|-
 
|Therefore, the only eigenvalue of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">0.</math>&nbsp; Additionally, there is only one linearly independent eigenvector.  
 
|Therefore, the only eigenvalue of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is &nbsp;<math style="vertical-align: -1px">0.</math>&nbsp; Additionally, there is only one linearly independent eigenvector.  
Line 27: Line 27:
 
|Hence, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable and the statement is false.
 
|Hence, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable and the statement is false.
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 33: Line 34:
 
|&nbsp;&nbsp; &nbsp; &nbsp; FALSE
 
|&nbsp;&nbsp; &nbsp; &nbsp; FALSE
 
|}
 
|}
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_1|'''<u>Return to Review Problems</u>''']]

Latest revision as of 12:17, 15 October 2017

True or false: If a matrix    is diagonalizable, then the matrix    must be diagonalizable as well.

Solution:  
Let   
First, notice that
 
which is diagonalizable.
Since    is a triangular matrix, the eigenvalues of    are the entries on the diagonal.
Therefore, the only eigenvalue of    is    Additionally, there is only one linearly independent eigenvector.
Hence,    is not diagonalizable and the statement is false.


Final Answer:  
       FALSE

Return to Review Problems