Difference between revisions of "031 Review Part 1, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
 
Line 10: Line 10:
 
|Therefore, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable and the statement is true.
 
|Therefore, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable and the statement is true.
 
|}
 
|}
 +
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
Line 16: Line 17:
 
|&nbsp;&nbsp; &nbsp; &nbsp; TRUE
 
|&nbsp;&nbsp; &nbsp; &nbsp; TRUE
 
|}
 
|}
[[031_Review_Part_1|'''<u>Return to Sample Exam</u>''']]
+
[[031_Review_Part_1|'''<u>Return to Review Problems</u>''']]

Latest revision as of 12:02, 15 October 2017

True or false: If    is a    matrix with characteristic equation    then    is diagonalizable.

Solution:  
The eigenvalues of    are  
Hence, the eigenvalues of   are distinct.
Therefore,    is diagonalizable and the statement is true.


Final Answer:  
       TRUE

Return to Review Problems