Difference between revisions of "031 Review Part 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 90: Line 90:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|First, we find the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; by solving &nbsp;<math style="vertical-align: -5px">\text{det }(A-\lambda I)=0.</math>
 +
|-
 +
|Using cofactor expansion, we have
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\text{det }(A-\lambda I)} & = & \displaystyle{\text{det }\Bigg(\begin{bmatrix}
 +
          2 & 0 & -2 \\
 +
          1 & 3  & 2 \\
 +
          0 & 0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          \lambda & 0 & 0 \\
 +
          0 & \lambda  & 0 \\
 +
          0 & 0 & \lambda
 +
        \end{bmatrix}\Bigg)}\\
 +
&&\\
 +
& = & \displaystyle{\text{det }\Bigg(\begin{bmatrix}
 +
          2-\lambda & 0 & -2 \\
 +
          1 & 3-\lambda  & 2 \\
 +
          0 & 0 & 3-\lambda
 +
        \end{bmatrix}\Bigg)}\\
 +
&&\\
 +
& = & \displaystyle{(-1)^{(2+2)}(3-\lambda)\text{det }\bigg(\begin{bmatrix}
 +
          2-\lambda & -2 \\
 +
          0 & 3-\lambda 
 +
        \end{bmatrix}\bigg)}\\
 +
&&\\
 +
& = & \displaystyle{(3-\lambda)(2-\lambda)(3-\lambda).}
 +
\end{array}</math>
 +
|-
 +
|Therefore, setting
 +
|-
 +
|
 +
::<math>(3-\lambda)(2-\lambda)(3-\lambda)=0,</math>&nbsp;
 +
|-
 +
|we find that the eigenvalues of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; are &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; and &nbsp;<math style="vertical-align: 0px">2.</math>
 
|}
 
|}
  

Revision as of 16:35, 13 October 2017

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have    linearly independent eigenvectors to be diagonalizable.
Hence,    is not diagonalizable.

(b)

Step 1:  
First, we find the eigenvalues of    by solving  
Using cofactor expansion, we have

       

Therefore, setting
 
we find that the eigenvalues of    are    and  
Step 2:  


Final Answer:  
   (a)       is not diagonalizable.
   (b)    

Return to Sample Exam