Difference between revisions of "031 Review Part 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 34: Line 34:
 
!Step 1:    
 
!Step 1:    
 
|-
 
|-
|
+
|To answer this question, we examine the eigenvalues and eigenvectors of &nbsp;<math style="vertical-align: 0px">A.</math>
 +
|-
 +
|Since &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is a triangular matrix, the eigenvalues are the entries on the diagonal.
 +
|-
 +
|Hence, the only eigenvalue of &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is &nbsp;<math style="vertical-align: 0px">3.</math>
 
|}
 
|}
  
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Now, we find a basis for the eigenspace corresponding to &nbsp;<math style="vertical-align: 0px">3</math>&nbsp; by solving &nbsp;<math style="vertical-align: -5px">(A-3I)\vec{x}=\vec{0}.</math>
 +
|-
 +
|We have
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{A-3I} & = & \displaystyle{\begin{bmatrix}
 +
          3 & 1 \\
 +
          0 & 3
 +
        \end{bmatrix}-\begin{bmatrix}
 +
          3 & 0 \\
 +
          0 & 3
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          0 & 1 \\
 +
          0 & 0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 +
|-
 +
|Solving this system, we see &nbsp;<math style="vertical-align: -4px">x_1</math>&nbsp; is a free variable and &nbsp;<math style="vertical-align: -4px">x_2=0.</math>
 +
|-
 +
|Therefore, a basis for this eigenspace is
 
|-
 
|-
 
|
 
|
 +
::<math>\bigg\{\begin{bmatrix}
 +
          1  \\
 +
          0 
 +
        \end{bmatrix}\bigg\}.</math>
 +
 +
|}
 +
 +
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 +
!Step 3: &nbsp;
 +
|-
 +
|Now, we know that &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; only has one linearly independent eigenvector.
 +
|-
 +
|By the Diagonalization Theorem, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; must have &nbsp;<math style="vertical-align: 0px">2</math>&nbsp; linearly independent eigenvectors to be diagonalizable.
 +
|-
 +
|Hence, &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable.
 +
 
|}
 
|}
  
Line 61: Line 104:
 
!Final Answer: &nbsp;  
 
!Final Answer: &nbsp;  
 
|-
 
|-
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp;  
+
|&nbsp;&nbsp; '''(a)''' &nbsp; &nbsp; <math style="vertical-align: 0px">A</math>&nbsp; is not diagonalizable.
 +
 
 
|-
 
|-
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|&nbsp;&nbsp; '''(b)''' &nbsp; &nbsp;  
 
|}
 
|}
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]
 
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']]

Revision as of 16:15, 13 October 2017

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
To answer this question, we examine the eigenvalues and eigenvectors of  
Since    is a triangular matrix, the eigenvalues are the entries on the diagonal.
Hence, the only eigenvalue of    is  
Step 2:  
Now, we find a basis for the eigenspace corresponding to    by solving  
We have
       
Solving this system, we see    is a free variable and  
Therefore, a basis for this eigenspace is
Step 3:  
Now, we know that    only has one linearly independent eigenvector.
By the Diagonalization Theorem,    must have    linearly independent eigenvectors to be diagonalizable.
Hence,    is not diagonalizable.

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)       is not diagonalizable.
   (b)    

Return to Sample Exam