Difference between revisions of "031 Review Part 3, Problem 3"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
| Line 31: | Line 31: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
| − | | | + | |Since <math style="vertical-align: 0px">A</math> is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| + | |- | ||
| + | |Hence, the only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5.</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
| + | |- | ||
| + | |Now, to find a basis for the eigenspace corresponding to <math style="vertical-align: -4px">5,</math> we need to solve <math style="vertical-align: -5px">(A-5I)\vec{x}=\vec{0}.</math> | ||
| + | |- | ||
| + | |To do this, we use row reduction. Thus, we get | ||
| + | |- | ||
| + | | <math>\begin{array}{rcl} | ||
| + | \displaystyle{A-5I} & = & \displaystyle{\begin{bmatrix} | ||
| + | 5 & 1 \\ | ||
| + | 0 & 5 | ||
| + | \end{bmatrix}-\begin{bmatrix} | ||
| + | 5 & 0 \\ | ||
| + | 0 & 5 | ||
| + | \end{bmatrix}}\\ | ||
| + | &&\\ | ||
| + | & \sim & \displaystyle{\begin{bmatrix} | ||
| + | 0 & 1 \\ | ||
| + | 0 & 0 | ||
| + | \end{bmatrix}.} | ||
| + | \end{array}</math> | ||
| + | |- | ||
| + | |Solving this system, we see <math style="vertical-align: -4px">x_1</math> is a free variable and <math style="vertical-align: -4px">x_2=0.</math> | ||
| + | |- | ||
| + | |Therefore, a basis for this eigenspace is | ||
|- | |- | ||
| | | | ||
| + | ::<math>\bigg\{\begin{bmatrix} | ||
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
|} | |} | ||
| Line 58: | Line 87: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
| − | | '''(a)''' | + | | '''(a)''' The only eigenvalue of <math style="vertical-align: 0px">A</math> is <math style="vertical-align: 0px">5</math> and the corresponding eigenspace has basis <math style="vertical-align: -20px">\bigg\{\begin{bmatrix} |
| + | 1 \\ | ||
| + | 0 | ||
| + | \end{bmatrix}\bigg\}.</math> | ||
| + | |||
|- | |- | ||
| '''(b)''' | | '''(b)''' | ||
|} | |} | ||
[[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_3|'''<u>Return to Sample Exam</u>''']] | ||
Revision as of 15:56, 13 October 2017
Let
(a) Find a basis for the eigenspace(s) of
(b) Is the matrix diagonalizable? Explain.
| Foundations: |
|---|
| Recall: |
| 1. The eigenvalues of a triangular matrix are the entries on the diagonal. |
| 2. By the Diagonalization Theorem, an matrix is diagonalizable |
|
Solution:
(a)
| Step 1: |
|---|
| Since is a triangular matrix, the eigenvalues are the entries on the diagonal. |
| Hence, the only eigenvalue of is |
| Step 2: |
|---|
| Now, to find a basis for the eigenspace corresponding to we need to solve |
| To do this, we use row reduction. Thus, we get |
| Solving this system, we see is a free variable and |
| Therefore, a basis for this eigenspace is |
|
|
(b)
| Step 1: |
|---|
| Step 2: |
|---|
| Final Answer: |
|---|
| (a) The only eigenvalue of is and the corresponding eigenspace has basis |
| (b) |