Difference between revisions of "031 Review Part 3, Problem 1"

From Grad Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Foundations:    
 
!Foundations:    
 +
|-
 +
|Recall:
 +
|-
 +
|'''1.''' The eigenvalues of a triangular matrix are the entries on the diagonal.
 +
|-
 +
|'''2.''' By the Diagonalization Theorem, an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable
 
|-
 
|-
 
|
 
|
 +
:if and only if &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly independent eigenvectors.
 
|}
 
|}
  

Revision as of 13:10, 13 October 2017

(a) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.

(b) Is the matrix    diagonalizable? If so, explain why and diagonalize it. If not, explain why not.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam