Difference between revisions of "031 Review Part 3, Problem 3"

From Grad Wiki
Jump to navigation Jump to search
Line 13: Line 13:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|
+
|Recall:
 +
|-
 +
|'''1.''' The eigenvalues of a triangular matrix are the entries on the diagonal.
 +
|-
 +
|'''2.''' By the Diagonalization Theorem, an &nbsp;<math style="vertical-align: 0px">n\times n</math>&nbsp; matrix &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; is diagonalizable
 +
|-
 +
|if and only if &nbsp;<math style="vertical-align: 0px">A</math>&nbsp; has &nbsp;<math style="vertical-align: 0px">n</math>&nbsp; linearly independent eigenvectors.
 
|}
 
|}
  

Revision as of 13:08, 13 October 2017

Let  

(a) Find a basis for the eigenspace(s) of  

(b) Is the matrix    diagonalizable? Explain.


Foundations:  
Recall:
1. The eigenvalues of a triangular matrix are the entries on the diagonal.
2. By the Diagonalization Theorem, an    matrix    is diagonalizable
if and only if    has    linearly independent eigenvectors.


Solution:

(a)

Step 1:  
Step 2:  

(b)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam