Difference between revisions of "031 Review Part 3, Problem 4"

From Grad Wiki
Jump to navigation Jump to search
Line 20: Line 20:
 
!Foundations:    
 
!Foundations:    
 
|-
 
|-
|Recall that if &nbsp;<math>W</math>&nbsp; is a subspace of &nbsp;<math>\mathbb{R}^n,</math>&nbsp; then
+
|Recall that if &nbsp;<math style="vertical-align: 0px">W</math>&nbsp; is a subspace of &nbsp;<math style="vertical-align: -4px">\mathbb{R}^n,</math>&nbsp; then
 
|-
 
|-
 
|
 
|
Line 42: Line 42:
 
         \end{bmatrix}</math>
 
         \end{bmatrix}</math>
 
|-
 
|-
|is in  &nbsp;<math>W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to  
+
|is in  &nbsp;<math style="vertical-align: -4px">W^\perp,</math>&nbsp; it suffices to see if this vector is orthogonal to  
 
|-
 
|-
|the basis elements of &nbsp;<math>W.</math>
+
|the basis elements of &nbsp;<math style="vertical-align: 0px">W.</math>
 
|-
 
|-
 
|Notice that we have
 
|Notice that we have
Line 68: Line 68:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 +
|-
 +
|Additionally, we have
 
|-
 
|-
 
|
 
|

Revision as of 10:00, 13 October 2017

Let    Is    in    Explain.


Foundations:  
Recall that if    is a subspace of    then


Solution:

Step 1:  
To determine whether the vector
is in    it suffices to see if this vector is orthogonal to
the basis elements of  
Notice that we have

       

Step 2:  
Additionally, we have

       

Hence, we conclude


Final Answer:  
       

Return to Sample Exam