Difference between revisions of "031 Review Part 2, Problem 6"
Jump to navigation
Jump to search
Kayla Murray (talk | contribs) |
Kayla Murray (talk | contribs) |
||
Line 38: | Line 38: | ||
!Step 1: | !Step 1: | ||
|- | |- | ||
− | |First, we calculate <math>||\vec{v}||.</math> | + | |First, we calculate <math style="vertical-align: -4px">||\vec{v}||.</math> |
|- | |- | ||
|We get | |We get | ||
Line 55: | Line 55: | ||
!Step 2: | !Step 2: | ||
|- | |- | ||
− | |Now, to get a unit vector in the direction of <math>\vec{v},</math> we take the vector <math>\vec{v}</math> and divide by <math>||\vec{v}||.</math> | + | |Now, to get a unit vector in the direction of <math style="vertical-align: -4px">\vec{v},</math> we take the vector <math style="vertical-align: 0px">\vec{v}</math> and divide by <math style="vertical-align: -4px">||\vec{v}||.</math> |
|- | |- | ||
|Hence, we get the vector | |Hence, we get the vector | ||
Line 78: | Line 78: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using the formula in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{dist}(\vec{v},\vec{y})} & = & \displaystyle{||\vec{v}-\vec{y}||}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\Bigg|\Bigg|\begin{bmatrix} | ||
+ | -3 \\ | ||
+ | 3 \\ | ||
+ | -5 | ||
+ | \end{bmatrix}\Bigg|\Bigg|.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we get | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\text{dist}(\vec{v},\vec{y}) } & = & \displaystyle{\sqrt{(-3)^2+3^2+(-5)^2}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{9+9+25}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\sqrt{34}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 92: | Line 112: | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 1: | !Step 1: | ||
+ | |- | ||
+ | |Using the formula in the Foundations section, we have | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\hat{y}} & = & \displaystyle{\frac{\vec{y}\cdot \vec{v}}{\vec{v}\cdot \vec{v}}\vec{v}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\frac{-1(2)+3(0)+0(5)}{(-1)(-1)+3(3)+0(0)}\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
{| class="mw-collapsible mw-collapsed" style = "text-align:left;" | {| class="mw-collapsible mw-collapsed" style = "text-align:left;" | ||
!Step 2: | !Step 2: | ||
+ | |- | ||
+ | |Continuing, we get | ||
|- | |- | ||
| | | | ||
+ | <math>\begin{array}{rcl} | ||
+ | \displaystyle{\hat{y}} & = & \displaystyle{\frac{-2}{20}\begin{bmatrix} | ||
+ | -1 \\ | ||
+ | 3 \\ | ||
+ | 0 | ||
+ | \end{bmatrix}}\\ | ||
+ | &&\\ | ||
+ | & = & \displaystyle{\begin{bmatrix} | ||
+ | \frac{1}{5} \\ | ||
+ | -\frac{3}{5} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}.} | ||
+ | \end{array}</math> | ||
|} | |} | ||
Line 106: | Line 152: | ||
!Final Answer: | !Final Answer: | ||
|- | |- | ||
− | | '''(a)''' | + | | '''(a)''' <math>\begin{bmatrix} |
+ | \frac{-1}{\sqrt{10}} \\ | ||
+ | \frac{3}{\sqrt{10}} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
+ | |- | ||
+ | | '''(b)''' <math>\sqrt{34}</math> | ||
|- | |- | ||
− | | '''(b)''' | + | | '''(b)''' <math>\begin{bmatrix} |
+ | \frac{1}{5} \\ | ||
+ | -\frac{3}{5} \\ | ||
+ | 0 | ||
+ | \end{bmatrix}</math> | ||
|} | |} | ||
[[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] | [[031_Review_Part_2|'''<u>Return to Sample Exam</u>''']] |
Revision as of 15:24, 12 October 2017
Let and
(a) Find a unit vector in the direction of
(b) Find the distance between and
(c) Let Compute the orthogonal projection of onto
Foundations: |
---|
1. The distance between the vectors and is |
|
2. The orthogonal projection of onto is |
|
Solution:
(a)
Step 1: |
---|
First, we calculate |
We get |
|
Step 2: |
---|
Now, to get a unit vector in the direction of we take the vector and divide by |
Hence, we get the vector |
(b)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
(c)
Step 1: |
---|
Using the formula in the Foundations section, we have |
|
Step 2: |
---|
Continuing, we get |
|
Final Answer: |
---|
(a) |
(b) |
(b) |