Difference between revisions of "031 Review Part 2, Problem 6"

From Grad Wiki
Jump to navigation Jump to search
Line 37: Line 37:
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
{| class="mw-collapsible mw-collapsed" style = "text-align:left;"
 
!Step 1:    
 
!Step 1:    
 +
|-
 +
|First, we calculate &nbsp;<math>||\vec{v}||.</math>&nbsp;
 +
|-
 +
|We get
 
|-
 
|-
 
|
 
|
 +
&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{||\vec{v}||} & = & \displaystyle{\sqrt{(-1)^2+3^2+0^2}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{1+9}}\\
 +
&&\\
 +
& = & \displaystyle{\sqrt{10}.}
 +
\end{array}</math>
 
|}
 
|}
  
Line 44: Line 55:
 
!Step 2: &nbsp;
 
!Step 2: &nbsp;
 
|-
 
|-
|
+
|Now, to get a unit vector in the direction of &nbsp;<math>\vec{v},</math>&nbsp; we take the vector &nbsp;<math>\vec{v}</math>&nbsp; and divide by &nbsp;<math>||\vec{v}||.</math>
 +
|-
 +
|Hence, we get the vector
 +
|-
 +
|&nbsp; &nbsp; &nbsp; &nbsp;<math>\begin{array}{rcl}
 +
\displaystyle{\frac{1}{||\vec{v}||}\vec{v}} & = & \displaystyle{\frac{1}{\sqrt{10}}\begin{bmatrix}
 +
          -1 \\
 +
          3 \\
 +
          0
 +
        \end{bmatrix}}\\
 +
&&\\
 +
& = & \displaystyle{\begin{bmatrix}
 +
          \frac{-1}{\sqrt{10}} \\
 +
          \frac{3}{\sqrt{10}} \\
 +
          0
 +
        \end{bmatrix}.}
 +
\end{array}</math>
 
|}
 
|}
  

Revision as of 15:04, 12 October 2017

Let    and  

(a) Find a unit vector in the direction of  

(b) Find the distance between    and  

(c) Let    Compute the orthogonal projection of    onto  


Foundations:  
1. The distance between the vectors    and    is
2. The orthogonal projection of    onto    is


Solution:

(a)

Step 1:  
First, we calculate   
We get

       

Step 2:  
Now, to get a unit vector in the direction of    we take the vector    and divide by  
Hence, we get the vector
       

(b)

Step 1:  
Step 2:  

(c)

Step 1:  
Step 2:  


Final Answer:  
   (a)    
   (b)    

Return to Sample Exam